从方法论及业务实践过程中,对数据分析的几点感悟

1,434次阅读
没有评论

近年来,互联网行业也不断涌现了许多新鲜的名词,现如今,数据分析被广泛的应用到各行各业当中。本文通过方法论及业务实践的方式,阐述数据分析与业务发展之间的相互作用以及企业是数据分析管理,希望对你有所启发。

从方法论及业务实践过程中,对数据分析的几点感悟

开篇

近些年,互联网行业涌现过许多特有的名词,例如:

  • IP:并非你电脑的IP,指的是知识产权。但从用法来看,更像是一个产业域。例如《复仇者联盟》这个IP。
  • 私域流量之前的私域:顾名思义,指的是自己能够直接触达用户的渠道。例如,微信公众号,关注自己公众号的用户,就是自己的私域流量。企业的活动、营销,可以直接触达用户。
  • 垂直:当然指的不是两线垂直相交。这是一个比较古老的词汇,这里指的是一个行业的细分,例如唯品会,在起初就是作为化妆品领域的一个垂直电商。

有很多名词已经过气,当然也有新的名词不断的在涌现。

而“数据分析”可以说是一个经久不衰的词汇,当然它代表了一项工作性质,也代表了一个行业。

说起数据分析,当下一定有很多人会把它与大数据联系在一块,毕竟大数据也是当下的一个热词,也是被大众误理(夸张理解/懵懂/感觉很厉害)最多的一个词。

不严格的来说,数据分析的渊源可以追溯到17世纪的统计学,并且,其确实也是由统计学发展而来。

直到18世纪初,苏格兰工程师威廉•普莱费尔发明了统计制图法,用于时间序列数据的折线图和面积图,柱状图用于描述不同类别的数量之间的比较,饼状图用于描述隶属同一组的多个数值的比例,这是一种数据可视化的雏形,却也为现代数据可视化(data visualization)和探索性数据分析(exploratory data analysis)奠定了基础。

随着科技的发展,尤其是计算机技术的突飞猛进,算法、模型、数据库机器学习被应用到了统计学与概率学当中,至此,便有了现代化的数据分析、预测、数据挖掘等。

现如今,数据分析被广泛的应用到各行各业当中。有些观点认为,似乎企业的发展、运营,已经离不开数据分析,甚至主要依靠数据分析。不可否认,伴随着近些年大数据、云计算、人工智能物联网等业务的火热,数据价值也确实被更多的挖掘,大数据、数据资产、数据治理等基础数据业务也在不断的夯实,但我们也要客观的去看待数据分析的应用能力、使用方法、应用结果。

毕竟,近些年倒下的大企业也不少,例如每日优鲜,数据分析应该占据着企业极高的业务比重,但依然默默的退出了市场。

本文将从数据分析本身出发,通过方法论及业务实践的方式,去阐述数据分析与业务发展之间的相互作用,以及企业对于数据的分析管理过程。我们不去讨论结局,但希望这个过程能够给大家带来启发。

一、数据分析及价值

1. 什么是数据分析

管理学大师彼得.德鲁克曾说过:“如果你不能量化它,你就无法管理它。”

从字面上看,数据是基础,而分析才是核心,数据是经营的量化结果,洞悉数据背后的逻辑、规律、趋势,提取出有价值的信息、形成建议,这个过程就是数据分析。

可以说,数据分析是一项入门容易、但精通困难的学科、工作。我们常说,数据本身并没有价值,从数据中提取有效的信息,才使得数据拥有了价值。而数据分析的核心工作,就是提取数据价值,反哺业务。但做到这些并不容易,许多企业都在做数据分析,他们渴求着从中挖掘出数据价值,但现实却给出了相反的结果。

有效的数据分析需要懂业务、懂分析(思维方法模型)、懂工具(分析工具),以及敏锐的商业洞见。精通每个环节并不容易,这也是为什么,能够崛起的企业总是凤毛麟角,大多数企业都在蹒跚前进。可以说,数据分析能力也是决定企业发展的关键因素。

2. 数据分析能力

从数据——到信息——到业务流程/业务经营,是数据发挥价值的过程。数据能力从:结果描述(知其然)、数据分析(知其所以然)、发现业务风险及机会、直接用于业务过程成为生产力,其能力价值也是不断演进提升的过程。

一般来说,企业的数据分析能力越强,其在市场的竞争优势越大。

从方法论及业务实践过程中,对数据分析的几点感悟

综合来说,对于能力的理解,可以归纳为四个过程:

 ①描述过去已经发生的

在这个阶段,我们可以通过常规的报表去查询每日的运营状况,包括销量、用户活动、库存等。 

②了解现在正在发生的

这个阶段,我们可以通过平台的能力、实时计算能力,查看当前数据状况,例如实时销量、实时库存、在途商品等;同时,也会对突发状况进行告警,例如POS掉线、并发堆积引发阻塞等,我们需要针对现状进行问题疏导和解决。

③预测未来可能发生的

这个阶段,需要借助人工智能、算法、机器学习等智能化的工具,进行业务预测,当然这个前提是海量的基础数据训练。例如,交通状况的预测就需要增长率法、重力模型法、遗传算法、ConvLSTM等多种算法的混合支撑。

④优化策略驱动增长

这个阶段,我们已经拥有全数据链路能力,所以才能更好的为业务发展过程给出最得体的运营方案。

例子不多举,我想说的是,一个完整的数据分析过程,需要拥有这样最基本的过程,当然这又回到上述的观点,这些都需要懂业务、懂工具、懂分析、懂商业洞察。业务是根本,工具是手段,分析是能力,商业洞察才是创新,才能发现问题、预防问题、预测走向、引领转变。

3. 数据分析的价值

数据分析的价值,是其最大程度的体现。但就我国目前企业的能力而言,只能说通过数据分析,达成了哪些目的。

从方法论及业务实践过程中,对数据分析的几点感悟

基于我们以往的经验及应用过程,可以归纳为六点。

  1. 提升收入利润(直接性价值)
  2. 降低成本费用(直接性价值)
  3. 提升管理效率(发展性价值)
  4. 控制风险降低损失(发展性价值)
  5. 提升无形经济利益(创造性价值)
  6. 外部量化数据收入(创造性价值)

企业利润和成本,是能够数据价值的最直接体现,是最终端的效应。但数据分析手段如果仅仅作用在最终侧,那么将会导致一个弊端,就是需要经常调整决策,这对于企业的发展是有反作用力的。

所以,数据分析的底层作用,是企业管理的提效,通过对生产、管理、供应链、物流、成本、销售等基本环节的把控,夯实企业发展基础,是企业利润和成本的根本保证。

最后,在市场竞争中脱颖,做好自身仅仅是基础,更多的是需要迎合市场,所以外部数据、价值挖掘的价值利用,才是企业发展的助推器。

4. 我们处在哪个阶段

我们说了这么多,相对应的各位看官,自己的企业又是处于什么发展阶段呢。我们姑且将其分为五个阶段,而这几个阶段也与上文中的分析能力过程和数据分析价值相对应。

①数据应用薄弱阶段

阶段目标:需要获得足够的数据来了解企业的经营状况。

问题:还不能完整了解企业正在经历着什么,更不用说外部环境。

②局部业务/职能使用数据分析

阶段目标:通过数据分析、数据工具,解决某一项工作的问题,从而进行改进。

问题:如何进一步提升效率,如何全产业应用。

③对应数据应用进行整合

目的:利用数据能力提高差异化能力。

问题:通过数据分析现在在发生什么?我们可以从当下的趋势中推论出什么。

④整体数据应用并取得单点优势

目标:数据能力是业绩和价值的重要驱动因素。

问题:数据应用怎么驱动经营和管理创新,如何实现差异化。

⑤全面凭借数据开展竞争并持续优势

目标:数据能力是业绩和价值的首要驱动因素。

问题:下一步应该怎么做,有怎样的可能性,如何保持领先地位。

了解的自身状况,后面我们就要根据自身状况去进行改变。

二、数据分析体系构建

数据分析体系,是企业业务发展的综合整理,既表达了企业发展的现行业务架构,也体现了企业内部精细化分工。

1. 数据分析体系构建方法论

数据分析体系,是由数据分析模型构建。

客观事物或现象,是一个多因素综合体,因素之间存在着相互依赖又相互制约的关系。为了分析其相互作用机制,揭示内部规律,可根据理论推导,或对观测数据的分析,或依据实践经验,设计一种模型来代表所研究的对象。一般构建数据分析模型体系分为一下几个步骤:

①理解业务

思考该模块工作的目标、业务流程、核心指标及行动方案;

思考业务流程各阶段的待解决问题,初步确定需要几个分析模型来支持和指导业务运营、决策支持。

以商品销售为例,销售模块的核心指标一定是销量、利润。但结合整体业务流程,还需要了解后台配套的商品库存、人工成本、供应链成本、物流成本等,通过逐步拆解细分,才能得到混合型的支撑模型。

②模型验证和调优

首先要对自身模型检验。第一要查看分析模型在业务应用中是否体现了结构化(有序的、层层递进)、公式化(可量化)、业务化(贴合实际)的思维;第二要查看分析模型是否能够支撑完整的业务闭环;第三要查看分析模型是否达成业务目标。

其次,要对分析模型产生的数据结果进行验证,针对数据偏离进行模型调优;

最后,对模型进行解读,即用户如何理解数据、用数据,根据用户体验优化模型。

③构建分析模型

明确每一个分析模型适用业务场景、解决什么问题、和使用的角色;

明确各个模型分别是什么模式,描述性分析、诊断性分析、预测性分析、决策建议性分析;

按照目标-核心指标-围绕核心指标建立分析模型的方法,推导分析模型;

细分模型所需的指标维度、以及告警设计;

思考该模型与其他模型之间的关系是什么,进行模型的跳转与连接。

2. 构建数据分析模型体系过程

所以,根据方法论所述,构建数据分析模型体系,基本步骤可以概括为:

①理解业务,立足目标

通过核心指标监控、业务流程分析等方法来发现业务问题,针对性的进行数据分析与挖掘。

积累的问题解决经验、成熟的分析思路,经过系统的梳理,梳理为一个或多个成型的数据分析模型。

②细化流程,发现问题

细化流程的方法:一种是按照组织管理职能将业务模块分解,另一种是参照业界业务自然的发展阶段来细化分解。

数据分析模型的核心,不在于图表华丽、方法炫酷,而是能够适用业务、解决问题、带来业务改善。

③逐个梳理分析模型

您的模型应用了何种分析思维,是公式化、结构化还是业务化。

您的模型应用了何种分析模式,描述性分析、诊断性分析、预测性分析、决策建议性分析。

您的模型应用了何种分析模式,描述性分析、诊断性分析、预测性分析、决策建议性分析。

模型与模型之间的关系是什么,无关、关联、递进、基础。模型之间的下钻关系是什么。

 ④指标维度告警考虑

角色:首先要进行角色区分,角色分为运营、采销、管理等,模型是为哪些角色建设的,不同角色所需的指标维度告警方式是否一样。

指标:模型所需的指标是哪些,将指标定义和计算公式梳理清晰,并且对核心指标进行解读,如果指标缺失则加快指标建设。

维度:维度是分析和汇总数据的视角;模型所需的维度是哪些,维度之间的钻取关系,如果维度缺失则加快维度建设。

告警:核心指标是否需要设置异常值提醒通知,是否需要将异常信息推送给相关人员等。

⑤数据验证

按照分析思路填写真实数据;

检查数据指标及分析思路的严谨性;

请使用方试用模型,提修改建议;

结构化、公式化、业务化思维、闭环、目标达成等;

存在问题按重复上述步骤。

⑥解读模型构建关系

对模型进行解读,异常分析的路径,怎么理解数据背后的含义、如何用数据驱动业务改善。

基于整个业务的全流程及分析问题,全盘思考模型之间的关系是什么,模型与模型的跳转与连接是怎样的。

3. 分析模型体系评估

从方法论及业务实践过程中,对数据分析的几点感悟

4. 零售经营分析体系案例

从方法论及业务实践过程中,对数据分析的几点感悟

我们结合电商综合体,进行了行业经营分析模型体系构建。

基于分析模型构建方法论,将庞大的业务进行拆解,构建细分业务的详细指标,考虑模型之间的流程流转、业务跳转等,从而展现电商综合体的经营架构和内部业务细分,体现其核心的业务模式,窥探可创新发展方向。

在大的方向上,电商综合体的经营分析体系可分为:经营环境分析、财务分析、人力分析、战略发展分析,以及最重要的业务分析。

业务分析,根据实际业务发展状况,进行模块化拆解,可分为:流量、销售、会员、门店、商品、广告、服务、单品、绩效、商户、连发。

以流量为例,流量主题的业务目标是:提升流量的数量及质量、提高转化率、促进销售增长、赋能智慧零售。模型目标是:监控线上运营流量核心指标、及时发现异常、细化分析、及时调整。

同时流量主题又可细分为线上流量、线下流量。线上流量又可通过转化路径,细分到页面、搜索、站外等。搜索模块再而细分,直至到形成商品购买页的流量转化归因及闭环。

从方法论及业务实践过程中,对数据分析的几点感悟

三、数据分析工具建设

数据分析工具,是数据分析的核心手段。借由数据分析体系构建的思路,数据分析工具的建设,同样应该坚持结构化、公式化、业务化的原则,支持业务的精细化拆解,支持不同角色的业务需求,最终还是要提升业务的流转效率、经营效率、管理效率。

从方法论及业务实践过程中,对数据分析的几点感悟

图(分析工具产品架构)

我们从业务角度触发,将分析工具分为前端的业务应用和后端的处理核心。

前端的核心应用就是数据分析门户,为经营管理人员、数据分析人员、门店人员、促销人员等。

后端的系统,集成了告警、算法、营销引擎、智能化产品。后端系统不直接应用于经营管理部门,但为业务经验经营提供基础的数据处理、指标处理、业务告警、智能推荐、智能数据服务、智能客服服务等能力,是前端业务经营的智慧大脑。

1. 分析工具核心功能

①指标维度建设内容

指标维度的建设思想,在数据分析体系建设中已经有过阐述,在此不再多述。

在这里要额外说一下维度,维度是指标的属性描述,例如流量,流量的相关维度例如:线上/线下、app/web/小程序、首页/商品页/购买页、地域、门店等等。在数据分析管理当中,维度也被用来做权限的管控。最典型的案例:通过门店维度,管控店长仅能看到自身店铺的相关数据。

②业务驾驶舱

现在的BI工具,驾驶舱的特性已经被追求到了极致。但好的驾驶舱搭建并不容易。

驾驶舱搭建应遵循一下步骤:

  1. 确定终端:pc、app、大屏、尺寸
  2. 确定驾驶舱类型:战略型、分析型、操作型
  3. 确定指标:能一目了然业务运营现状
  4. 确定图表
  5. 确定排版和美化

驾驶舱类型与指标紧密结合。战略型驾驶舱,一般展示宏观指标,例如当日商品销售(排行);分析型驾驶舱,则会体现各个指标之间的联系,例如总体销售、分时销售、维度销售;操作型驾驶舱,则体现业务的时效性和预警能力,例如退出率、闪退率、XX失败数等。

③报表市场

报表市场,顾名思义,是一个报表的汇聚。通常适用于跨部门、跨业务的数据查询分析。当然,这需要配套权限的解冻、流程审批,避免数据权限的扩大。一般来说,审批过程会大大减少数据外泄的隐患(关于数据安全不在此描述)。

从方法论及业务实践过程中,对数据分析的几点感悟

④分析报告

某些大型企业来说,分析报告是亮点,需要算法的支撑。

通常来说,传统分析报告一般为模板化的格式,是一种报表数据的汇总体现。但经过算法的融合,分析报告可以变的更加的灵活,丰富。尤其是当前openapi开发的cp4.0的出现,分析报告完全可以交由AI来做。AI提供的报告的创造性远超我们。

⑤自助分析

自助分析可以说是一些企业运营的命脉,这一现象普遍存在与中小企业当中。其原因我们不取追究,但坦率的来说,通过托拉拽的方式,将由指标、维度、事件周期模块化置于画布,由数据分析人员自由操作,要比固定的预置报表更加灵活。同时配以人员的创新性,更加适合数据分析人员进行个性化、临时性的数据分析、数据创新。

以XX品类会员生命周期及画像分析为例:

问题背景:XX品类年度买家规模占比在全品类的20%以上,是会员运营的重点品类。但从买家增长和销售增长趋势看,2020年该品类一级商品组销售规模同比下降XX%,正向买家规模同比增长XX%,增长率较18、19年同比增长率下滑严重。且在2021年1-5月,销售及买家规模均同比下滑。

分析目的:通过分析了解会员生命周期结构情况,各阶段人员画像特征,以及如何针对性采取行动来做策略干预,提升用户规划、优化用户结构、提升会员价值。

分析思路:

生命周期分析:结合会员生命周期理论框架及自身特征、品类特性,定义XX品类会员生命周期阶段,了解各阶段会员概况、价值和生命周期结构。

画像分析:从会员个人属性特征、消费偏好特征、交叉购买方面,分析各阶段生命周期人群画像,为会员运营提升提供决策建议。

通过个性化的自助分析,得出以下结果:

从会员生命周期分布结构来看,该品类待挽回会员规模占主导地位,会员结构处于高流失型结构。

从方法论及业务实践过程中,对数据分析的几点感悟

生命周期各阶段人均价值下降程度不同,仅成熟期会员的人均价值(贡献交易额)呈正向增长。

从方法论及业务实践过程中,对数据分析的几点感悟

客单价≥100 元的会员留存分布结构中,引入期+成长期会员占比过半,成长性较好。可重点关注该部分用户,提高复购,推进向成熟期转化。

从方法论及业务实践过程中,对数据分析的几点感悟

分析结论管理建议:

XX品类需要优化会员结构:XX品类 2020 年会员总数虽同比增长,但从生命周期结构来看,待挽回的沉睡期和流失期会员增长较多,留存会员规模及占比均下降,会员 的结构较差。且留存会员中,成熟期占比较低,处于增长阶段的会员占比处于主导地位,而没有有效的转化为成熟期会员。建议在关注会员规模的同时更要关注结构性问题。

XX品类会员贡献价值有待提升:XX品类会员贡献总交易额略提升,但核心的 留存会员贡献总交易额下降,人均贡献交易额下滑。建议从商品结构与用户画像匹配度、 营销方式优化、渠道选择上面,挖掘用户潜在需求,提升用户复购及 ARPU 值。

基于画像分析,从性别、年龄、地区、渠道偏好、购买期偏好等角度分析用户特征,为后续挽回、激活等精准营销策略提供支持。
从交叉购买品类的关联性看,可在运营中对表现较好的交叉品类做进一步联动营销。

2. 告警预警能力

告警系统,作用于在数据分析中,对核心指标告警方案配置管理、异常数据主动推送、触达,帮助业务人员及时知晓和处理经营异常。告警系统一般构建与指标体系之上,其核心是告警规则配置。
对于指标的告警配置,是对一个或多个指标设置告警规则,包含但不限于周期设置、阈值设置、维度维值设置、单位设置、时间颗粒度设置、推送策略设置。

基于告警信息,我们需要对告警规则进行解读分析,一方面了解业务运营状况;另一方面对告警规则进行调优。

消息推送是告警系统的基本功能之一,一般会包含邮箱、短信、MSG。每个企业可以根据告警等级,设置不同的通知方式。

最后,告警信息需要由责任人去关闭,从而形成告警的闭环。

应用案例:

黄金流量位在促销时期的 数据告警。

页面运营中有个“黄金流量位”的概念,每个页面、楼层的“黄金流量位” 是有限的,这个坑位运营的商品效果怎么样,需要业务人员实时关注不同楼层和坑位对应商品的实时曝光、点击、加购、提交订单和库存数据,及时进行调整,确保成交最大化。

比如大促预热时,某商品加购达到 100 件,但可售库存只有 20 件,这件商品就不适合作为主推款,占据“黄金流量位”的一定是库存、加购数据都比较优秀且平衡的商品。
类似的,还有高曝光低点击商品告警、有点击无转化商品告警、缺货告警。

3. 场景应用

整体应用:

从方法论及业务实践过程中,对数据分析的几点感悟

细分9个场景:

从方法论及业务实践过程中,对数据分析的几点感悟

四、数据分析应用管理机制

最后,我们来谈一谈数据分析应用的管理。有效、高效的管理机制,是数据分析价值发挥的催化剂,也是数据工具进化的基础动能,更是企业数据能力提升的铺路石。

1. 全员参与的重要性

①全员参与

好的产品都是运营出来的 ,用户需要持续有效使用中发现问题,发现与业务诉求的偏差,才能促进产品持续不断迭代提升,在应用落地中发挥数据真正的价值。

每个人都能真正从数据应用、数据管理和数据发现高度经营各自的本职工作,能在各自的工作中自觉利用或简单或复杂的数据分析工具,进行大大小小的数据分析挖掘,从数据中发现信息财富,助力公司全方位的提升。

②建立常态化的跨域流程和机制

数据驱动经营是跨专业、跨团队的协同配合,需要建立对应的流程和制度保证最终的实践效果,明确相关方在不同阶段的角色、职能、分工和价值,保障各环节的阶段性目标达成,实现数据驱动经营的闭环。

③管理层的推动作用不可忽视

只有各体系中高层持续推动,才能快速在公司内建立、推广、实施、完善真正的全员参与、跨部门跨专业、具有战略竞争意义的数据驱动运营管理的工作。

④数据文化的培养至关重要

企业的数据能力提升,人是核心动能,人力资源的数据素质培养,氛围不可或缺。通过培养让数据说话的氛围:把数据用起来,让数据反馈管理、改进管理、提升业绩;通过建设数据分析交流的阵地:数据服务号、数据论坛、数据分享会,实现企业员工能的共同提升;保持开放与学习的心态:参加外部学习,吸收行业优秀案例,开拓视野。

2. 管理机构配置

为提高核心业务重要数据的应用一致性、完整性、准确性、有效性,在企业层面建立包括数据管理部门、财务中心、业务管理中心、研发中心的“数据常设组织以及运作机制”。

常设数据联合组织整体管理由数据管理部门牵头,组织构成及各域牵头人如下,围绕数据细分域各负责人承担业务域专家、产品专家的角色,协同促进数据建设、应用能力的提升。

3. 健全数据管理流程

基于数据域常设组织的设立,各数据域业务管理方、研发管理方以及角色负责人从需求调研、建设开发、应用管理、应用评估、数据质量监控五个方面监控系统完善数据及应用建设落地,配套各主题域的数据管理机制,从而提升数据分析能力与应用成熟度。

从方法论及业务实践过程中,对数据分析的几点感悟

4. 数据分析应用管理评估

对数据应用管理的评估,可拆解为数据覆盖度、数据分析力、数据准确性、数据触达力、数据驱动能力、用户活跃度、数据使用率等。

从方法论及业务实践过程中,对数据分析的几点感悟

我们可以通过各个维度的目标评估,做对应的策略、功能变更。

以用户活跃度为例,内部应用的用户活跃度,是衡量产品优劣的直观表现。但因产品前期的更替因素,结合新老产品的用户适应度来说,前期的产品使用,需要企业上层的推动。在产品后期,用户的反馈直观重要,直接影响员工的后期倾向程度,也会影响产品后期的质量,更甚影响企业长远的发展战略。

5. 数据安全基本要求

数据安全是当下全社会都注重的大事项。但因本文偏重数据分析角度,故数据安全部分仅简述一些。

①全民安全意识

不论是数据安全,还是个人隐私安全,企业都应该从日常的工作、生活中去培养全民的安全意识,这不仅仅是对企业,也是对个人、家庭、社会都是有益的。

我们可以出台一系列安全管理措施,从制度上保障数据安全底线;也可以举办日常培训,重点举例警示众人。

②权限开放与使用

在权限标准上,需评估人员岗位与其所需数据权限的匹配性与合理性,按需开放权限,原则上无特殊原因不得放大岗位权限,发生权限范围和职责不匹配的情况。

非兼岗人员不得与其他岗位角色绑定,造成数据权限放大,存在数据安全隐患。

权限使用上,是严禁将权限借用给他人的。

③数据安全与使用

数据使用上,连续30天未登录系统、门户等,系统自动实现冻结使用权限,解冻需流程审批。

数据安全上,导出权限需申请;导出数据量控制,上限为20万;导出行为纳入数据安全监控和管理。同时,需要制度、机制、产品功能上,控制数据后续的销毁。

结语

以上,是我们从业以来,对于数据分析的一些理解。总结了数据分析的基础方法论、讨论了数据分析体系、数据工具能力建设、数据分析应用场景等相关模块的联系。

我们不去追求每个企业都能够通过数据分析能力的提升,实现自身企业在市场竞争的脱颖而出,毕竟数据分析仅仅是企业前进方向的重要因素之一,而且数据分析对于每个行业、企业的重要性也不能一概而论。

我们只是将数据分析的一些基本理论、过程、效果展示给大家,为大家提供成功、失败的经验总结。

最后,有任何问题,还请大家批评指正,感谢。

本文由 @碧英数据 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 4 月
 12
3456789
10111213141516
17181920212223
24252627282930
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25 鹭羽 2025-12-13 22:37...
商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1 十三 2025-12-15 14:13:14 ...
跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026 一水 2025-1...
10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了

10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了

10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了 一水 2025-12-12 13:56:19 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026 一水 2025-1...
10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了

10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了

10亿美元OpenAI股权兑换迪士尼版权!米老鼠救Sora来了 一水 2025-12-12 13:56:19 ...
IDC MarketScape: 容联云位居“中国AI赋能的联络中心”领导者类别

IDC MarketScape: 容联云位居“中国AI赋能的联络中心”领导者类别

IDC MarketScape: 容联云位居“中国AI赋能的联络中心”领导者类别 量子位的朋友们 2025-1...