Data-driven Piecewise Affine Decision Rules for Stochastic Programming
with Covariate Information
解决问题:本篇论文旨在解决具有协变量信息的随机规划(SP)问题,提出了一种嵌入非凸分段仿射决策规则(PADR)的经验风险最小化(ERM)方法,旨在学习从特征到最优决策的直接映射。这是一个新问题。
关键思路:论文的关键思路是提出了一种PADR-based ERM方法,它应用于广泛的非凸SP问题,并具有理论上的一致性保证和计算可行性。为了解决非凸和不可微的ERM问题,作者开发了一种增强的随机主导极小化算法,并建立了沿着(复合强)方向稳定性的渐近收敛性以及复杂性分析。
其他亮点:论文还提出了一种改进的随机主导极小化算法,并建立了沿着(复合强)方向稳定性的渐近收敛性以及复杂性分析。实验结果表明,PADR-based ERM方法在各种设置下比现有方法具有更优异的性能,成本更低,计算时间更短,对特征维度和基础依赖性的非线性性具有鲁棒性。
关于作者:Yiyang Zhang,Junyi Liu和Xiaobo Zhao是本篇论文的主要作者。他们分别来自美国加州大学圣塔芭芭拉分校和香港中文大学。他们之前的代表作包括:Zhang和Zhao在2019年发表的“Deep Reinforcement Learning for Stochastic Optimal Control with Unknown Dynamics”和Liu在2018年发表的“Robust Multi-Objective Reinforcement Learning with Model Uncertainty”。
相关研究:最近的相关研究包括:Chen等人在2021年发表的“Stochastic Programming with Conditional Value-at-Risk: A Distributionally Robust Approach”和Wang等人在2020年发表的“Distributionally Robust Stochastic Programming with Wasserstein Metric”.
论文摘要:本文针对具有协变量信息的随机规划(SP),提出了一种嵌入非凸分段仿射决策规则(PADR)的经验风险最小化(ERM)方法,旨在学习从特征到最优决策的直接映射。我们建立了基于PADR的ERM模型的非渐近一致性结果,适用于无约束问题,以及渐近一致性结果,适用于有约束问题。为了解决非凸和不可微的ERM问题,我们开发了一种增强的随机主导极小化算法,并建立了沿着(复合强)方向稳定性的渐近收敛性以及复杂性分析。我们展示了所提出的PADR-based ERM方法适用于广泛的非凸SP问题,并具有理论上的一致性保证和计算可行性。我们的数值研究表明,在各种设置下,与最先进的方法相比,PADR-based ERM方法具有更优异的性能,成本更低,计算时间更短,并且对特征维度和底层依赖关系的非线性具有鲁棒性。