LLM/AIGC带来的创新机会

1,736次阅读
没有评论

2023年6月10日~11日,人人都是产品经理举办的【2023数字化产品经理大会·深圳站】完美落幕。远望资本创始合伙人@程浩老师,为我们带来《LLM/AIGC带来的创新机会》为题的分享。

LLM/AIGC带来的创新机会

ChatGPT的出现仿佛平地一声惊雷,无异于第四次工业革命。大模型对于人类的价值远超互联网的价值,互联网是搜索信息,大模型是理解信息。举个例子,图书馆有成千上万的书,互联网能帮我们做的是找到这本书,而大模型可以帮你理解、看懂、消化这本书。

而未来大模型对人类工作的替代会从初级白领开始,比如帮忙订酒店机票的助理,发展到后面可能也会取代高级白领,比如律师、医生等。

这就带来一个问题:未来,知识不是必选项。纯知识性的、重复性的工作将会被取代,留下来的岗位,都是在做创新的岗位。这也将会对国内的教育体系造成冲击。

接下来讲什么是LLM。这是一种压缩技术,提示语(Prompt)是解压缩。涌现是解压缩中,随机组合出现新的内容。它就相当于基因突变,但大部分基因突变都是错误的,涌现是好的基因突变。

泛化是LLM核心能力。什么是泛化?以前我在百度时,做问答的、客服的、新闻的都有自己的大模型和算法,但他们都只在垂直领域达到了59分,还不能商业化。而ChatGPT这个通用的模型,在每一个垂直领域都达到了80分,具有很好的泛化能力。

训练大语言模型模型,需要三个步骤。第一步是预训练,去互联网找很多语料,无监督学习。接下来第二步就是指令微调,给Q&A,预训练做得好,指令微调的成本越低。第三步是reinforcement learning。根据用户反馈不断调整,你问AI一个问题,AI给你回答,你可以告诉他是对的,给他正向回馈;也可以告诉他是错的,要他进行修正,让AI不断优化。还包括对齐,比如对其价值观,不能有地域歧视、残疾人歧视等等。

这三个步骤中,预训练的成本是最高的,没有上亿都不要搞预训练。很多创业公司都是先找好一个预训练模型,再进行后面两个步骤。

从大模型角度来说,数据质量是最重要的,其次是数据多样性,然后是数据规模,再是模型,最后才是模型参数。这也解释了为什么英文状态下的大模型效果会更好,因为不管是从数据质量还是数量或者多样性上,英文都是远超其他语言的。

如今,千亿参数可能是极限,未来的趋势是小型化,比如把大语言模型集成到手机里。

未来,还有一个趋势是从GUI(图形界面)到NLUI(自然语言交互)。现在打车还需要用滴滴,订外卖还要用美团,未来可以直接拿手机说打车去机场,订票去上海。

现在几乎每个企业都有自己的数据库,未来大语言模型也会像数据库一样,成为企业的重要基础措施。

未来大语言模型会让那些行业受益呢?主要是以文字语言交互为主导的行业,对纯数字化行业影响不大。

在C端领域,受益的可能是写作、问答、总结、法律、招聘、售前、客服、营销等这些以文字交互为主的行业。

那么,想要做大语言模型,是用开源模型还是闭源模型呢?像ChatGPT、文心一言这些都是闭源模型,但开源模型的趋势正愈演愈烈。

创业公司选择开源还是闭源呢?各有优势。开源你只需要买TOKEN就好了,再加上 Prompt engineering和向量数据库等。闭源的优势在于,保护数据隐私,并且可以不断用数据填充完善自己的模型。

C端有做开源的也有闭源的,但是B端几乎都是开源的。在做demo的时候,通常会用闭源的,效果最好,还不用买云计算资源,等到要形成行业壁垒了,再改回到开源模型。

那么,大语言模型,也就是通用模型,它的泛化能力足够好之后,是不是不需要垂直模型了?

不是的。通用模型很难替代垂直模型。

因为80%的有价值的行业知识和数据都在企业防火墙内,通用模型没办法接触到这些数据,自然也就没办法推导出答案。并且,通用模型具有一定的模糊性,所以它更适合一些容错率高的、低价值的行业。垂直模型更适合容错率低的、高价值的行业。

比如炒股票、自动驾驶这类需要精确、可控的事情显然不能用通用模型,但是聊天、写作就可以。

大语言模型有四个架构,最底层的是Infrastructure,例如算法、算力,这些和创业公司都没关系,都是巨头在参与。

第二层是large language models,比如ChatGPT、文心一言、通义千问都是属于第二层的。

第三层是LLMOPs,这层实际上是工具层,像向量数据库就是典型的LLMOPs。

第四层是应用APP。

LLM/AIGC带来的创新机会

最下面两层没有上亿的资金很难做出来,适合大公司去做,上面两层比较适合创业公司,尤其是应用层,可应用的行业太多了。

那么,创业公司能不能做通用大语言模型呢?很难。

首先,缺乏先发优势。创业公司能突破大公司的包围,核心原因就是你跑得快,有先发优势。要么是大公司没看上、没看懂或者走错方向了,所以创业公司能冲出来。但在大语言模型这块,这些情况都不成立,每个大公司都无比重视。

第二,没有Dummy Period。现在做大模型已经成为了共识,但是创业公司要想跑出来,那就得留有一定的非共识期来发育。

第三,缺乏场景。大公司都有很好的落地场景,比如百度可以把问答和搜索引擎结合,腾讯的语言模型可以和微信结合。但是创业公司有什么可落地的场景呢?

在垂直领域,创业的机会还是挺多的。我分成B端、C端、国内、国外四个方面来讲。

LLM/AIGC带来的创新机会

在国内做TO C的好处是什么呢?高爆发。在国内几个月做成几百万DAU是非常有可能的。但问题是什么呢?第一,壁垒低。你能做的,竞争对手也能做。第二,C端的流量红利没了。想想大家手机的首页APP已经有多久没更新过就知道了,几年都不会下载一个新应用。第三,巨头抄袭。你做了一个APP,那字节跳动、腾讯跟你做一个类似的,你怎么办?第四,合规成本高。做C端的大语言模型,用户问的问题是千奇百怪的,指不定哪个问题就违规了。第五,只能用国内的大模型。

在国内做TO B的好处是离钱近,壁垒相对高一些。但问题是,天花板低。在中国做TO B最大的痛苦就是企业的付费能力不好,这是受限于国内B端市场的规模。中国的IT Spending只有美国的六分之一,国内上市SaaS公司的人均产值只有30—60万人民币。所以在中国做企业服务就比较辛苦,核心原因就是民企没钱。

在国际做C端的好处是增长快,问题同样是壁垒低,而且市场已经是红海了。并且,即使是海外AIGC独角兽也面临巨头竞争。

在国际做B端的好处是海外企业付费好,天花板高。有垂直壁垒,巨头不会进入,而且国外的大模型相对更成熟。但问题是团队得懂海外的企业服务市场。

最后,我们在创业的时候,是AIGC+还是+AIGC呢?这两者的区别是你是用AIGC原生还是用AIGC赋能。比如要做一个客服系统,一个团队是之前就做AI的,先做好了问答机器人,再去添加客服系统的其他功能;另一个团队是本来就是做客服SaaS的,只不过之前的SaaS不是智能的而是人在后面回答,现在要把AI的自动回答功能加到已有的客服系统里去。

如何判断你更适合哪一种?第一个判断依据,如果公司70%的价值链都是AI,那么很显然就适合AIGC+的赛道。如果本身是SaaS,而AI只占到10%,那显然更适合+AIGC。第二个判断依据,看AI本身的技术壁垒怎么样。如果你选择AIGC+的赛道,那就必须补充业务工作流,完善价值链。未来,AIGC+和+AIGC一定会相互渗透的。

本文为直播专场分享整理内容,由人人都是产品经理运营 @Darcy 整理发布。未经许可,禁止转载,谢谢合作。

题图来自Unsplash,基于CC0协议

息存储空间服务。储空间服务。

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 6 月
 1234
567891011
12131415161718
19202122232425
2627282930  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25 鹭羽 2025-12-13 22:37...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...
商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1 十三 2025-12-15 14:13:14 ...
跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026 一水 2025-1...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地

预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地

预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地 henry 2025-12-11 10:27:...
Meta公开抄阿里Qwen作业,还闭源了…

Meta公开抄阿里Qwen作业,还闭源了…

Meta公开抄阿里Qwen作业,还闭源了… Jay 2025-12-11 11:48:25 来源:量子位 Ja...
MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这

MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这

MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这 西风 2025-12-11 15:...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...