✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
❤️ 内容介绍
在机器学习领域,数据分类是一个非常重要的任务。它涉及将数据点分组到不同的类别中,以便更好地理解和利用数据。在过去的几十年中,许多分类算法被开发出来,以满足不同类型的数据分类需求。然而,随着数据量的不断增加和数据复杂性的提高,传统的分类算法面临着一些挑战。为了应对这些挑战,研究人员提出了各种改进的算法,其中包括基于麻雀算法优化的核极限学习机(SSA-KELM)。
麻雀算法是一种模拟自然界中麻雀群体行为的优化算法。它受到了麻雀群体在觅食和迁徙过程中的协作和合作行为的启发。这种算法通过模拟麻雀群体中麻雀个体之间的信息交流和协调行动,来寻找问题的最优解。在SSA-KELM中,麻雀算法被应用于优化核极限学习机(KELM)的参数。
核极限学习机是一种基于神经网络的分类算法,它通过将输入数据映射到高维特征空间中,然后使用线性分类器对映射后的数据进行分类。与传统的支持向量机(SVM)相比,KELM具有更快的训练速度和更好的泛化性能。然而,KELM的性能仍然受到参数设置的影响。为了解决这个问题,研究人员引入了麻雀算法来优化KELM的参数。
在SSA-KELM中,麻雀算法被用来优化KELM的隐藏层神经元数量和正则化参数。隐藏层神经元数量决定了KELM的学习能力,而正则化参数可以控制模型的复杂度和泛化性能。通过使用麻雀算法优化这些参数,SSA-KELM能够更好地适应不同类型的数据集,并提供更准确的分类结果。
为了评估SSA-KELM的性能,研究人员进行了一系列的实验。实验结果表明,与传统的KELM和其他优化算法相比,SSA-KELM在不同的数据集上都取得了更好的分类性能。这证明了麻雀算法在优化KELM中的有效性和可行性。
总的来说,SSA-KELM是一种基于麻雀算法优化的核极限学习机,用于实现数据分类。它通过优化KELM的参数,提供了更好的分类性能和泛化能力。这种算法在处理大规模和复杂数据集时表现出色,对于解决实际问题具有重要意义。未来,我们可以进一步研究和改进SSA-KELM,以适应更多的应用场景,并推动机器学习在数据分类领域的发展。
🔥核心代码
function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt)
nb_data = size(Xtrain,1);%nxm 样本数nb
if strcmp(kernel_type,'RBF_kernel'),
if nargin<4,
XXh = sum(Xtrain.^2,2)*ones(1,nb_data);%nxn
omega = XXh+XXh'-2*(Xtrain*Xtrain');
omega = exp(-omega./kernel_pars(1));
else
XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));
XXh2 = sum(Xt.^2,2)*ones(1,nb_data);
omega = XXh1+XXh2' - 2*Xtrain*Xt';
omega = exp(-omega./kernel_pars(1));
end
elseif strcmp(kernel_type,'lin_kernel')
if nargin<4,
omega = Xtrain*Xtrain';
else
omega = Xtrain*Xt';
end
elseif strcmp(kernel_type,'poly_kernel')
if nargin<4,
omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2);
else
omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2);
end
elseif strcmp(kernel_type,'wav_kernel')
if nargin<4,
XXh = sum(Xtrain.^2,2)*ones(1,nb_data);
omega = XXh+XXh'-2*(Xtrain*Xtrain');
XXh1 = sum(Xtrain,2)*ones(1,nb_data);
omega1 = XXh1-XXh1';
omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));
else
XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1));
XXh2 = sum(Xt.^2,2)*ones(1,nb_data);
omega = XXh1+XXh2' - 2*(Xtrain*Xt');
XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1));
XXh22 = sum(Xt,2)*ones(1,nb_data);
omega1 = XXh11-XXh22';
omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1));
end
end
❤️ 运行结果
⛄ 参考文献
[1] 张超虎,陈平安,孙运全.基于麻雀搜索算法优化混合核极限学习机的变压器故障诊断方法:CN202210584876.X[P].CN202210584876.X[2023-09-06].
[2] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.
[3] 呼梦颖,杨霈轶,段建东,等.基于麻雀搜索算法优化核极限学习机的风电功率预测方法:202111247254[P][2023-09-06].
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计