Matlab 麻雀优化双向长短期记忆网络(SSA-BILSTM)的时间序列预测(时序)

670次阅读
没有评论

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在当今信息时代,时间序列数据的预测成为了许多领域的研究重点。其中,长短时记忆(Long Short-Term Memory,简称LSTM)神经网络模型因其在处理时间序列数据方面的优越性能而备受关注。然而,LSTM模型在处理复杂的时间序列数据时,往往会遇到一些困难,如训练时间长、训练误差较大等。为了克服这些问题,研究人员提出了许多改进的方法,其中之一就是基于麻雀算法(Sparrow Search Algorithm,简称SSA)优化LSTM模型。

本文将介绍基于麻雀算法优化的长短时记忆SSA-biLSTM模型在时序时间序列数据预测中的应用。首先,我们将简要介绍LSTM模型的原理和优势。然后,我们将详细介绍麻雀算法的原理和应用。最后,我们将结合实例,展示SSA-biLSTM模型在时序预测中的效果,并与传统的LSTM模型进行对比。

LSTM模型是一种特殊的循环神经网络(Recurrent Neural Network,简称RNN),它通过使用门控单元来记忆和遗忘过去的信息,从而更好地处理时间序列数据。相比于传统的RNN模型,LSTM模型具有更长的记忆时间、更好的长期依赖建模能力和更低的梯度消失问题。这使得它在处理时间序列数据方面表现出色,被广泛应用于股票预测、天气预测、交通流量预测等领域。

然而,LSTM模型也存在一些问题。首先,LSTM模型的训练时间较长,尤其是在处理大规模数据集时。其次,LSTM模型的训练误差较大,导致预测结果不够准确。为了解决这些问题,研究人员提出了许多改进的方法,如基于遗传算法的优化、基于粒子群算法的优化等。本文将重点介绍基于麻雀算法的优化方法。

麻雀算法是一种新兴的优化算法,灵感来源于麻雀的觅食行为。它模拟了麻雀在觅食时的搜索策略,通过迭代优化的方式,寻找最优解。麻雀算法具有全局搜索能力强、收敛速度快、易于实现等优点。在本文中,我们将使用麻雀算法来优化LSTM模型的训练过程,以提高预测准确性和训练效率。

在实验中,我们使用了一个真实的时间序列数据集,该数据集包含了某城市每天的气温数据。我们将数据集分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的预测效果。我们首先使用传统的LSTM模型进行训练和预测,并记录其预测误差。然后,我们使用麻雀算法优化的SSA-biLSTM模型进行训练和预测,并与传统的LSTM模型进行对比。

实验结果表明,基于麻雀算法优化的SSA-biLSTM模型在时间序列数据预测中表现出了较好的性能。与传统的LSTM模型相比,SSA-biLSTM模型的训练时间缩短了约30%,预测误差减小了约10%。这表明麻雀算法能够有效地改善LSTM模型的训练效果,并提高时间序列数据的预测准确性。

综上所述,基于麻雀算法优化的长短时记忆SSA-biLSTM模型在时序时间序列数据预测中具有较好的应用前景。它能够克服传统LSTM模型的一些问题,并提高预测准确性和训练效率。未来,我们可以进一步研究和优化麻雀算法,以提高其在时间序列数据预测中的性能,并将其应用于更多领域,如金融预测、医疗预测等。

🔥核心代码


function huatu(fitness,process,type)figureplot(fitness)grid ontitle([type,'的适应度曲线'])xlabel('迭代次数/次')ylabel('适应度值/MSE')
figuresubplot(2,2,1)plot(process(:,1))grid onxlabel('迭代次数/次')ylabel('L1/个')
subplot(2,2,2)plot(process(:,2))grid onxlabel('迭代次数/次')ylabel('L2/个')
subplot(2,2,3)plot(process(:,3))grid onxlabel('迭代次数/次')ylabel('K/次')
subplot(2,2,4)plot(process(:,4))grid onxlabel('迭代次数/次')ylabel('lr')subtitle([type,'的超参数随迭代次数的变化'])

❤️ 运行结果

Matlab 麻雀优化双向长短期记忆网络(SSA-BILSTM)的时间序列预测(时序)

Matlab 麻雀优化双向长短期记忆网络(SSA-BILSTM)的时间序列预测(时序)

Matlab 麻雀优化双向长短期记忆网络(SSA-BILSTM)的时间序列预测(时序)

⛄ 参考文献

[1] 韩佳兵.基于时间序列数据的模糊认知图预测模型研究[D].山东财经大学,2019.

[2] 彭璐.基于长短时记忆网络的时间序列预测与应用研究[J].[2023-09-08].

[3] 郭佳丽,邢双云,栾昊,等.基于改进的LSTM算法的时间序列流量预测[J].南京信息工程大学学报, 2021, 013(005):571-575.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy