【智能优化算法】基于暴龙优化算法TROA求解单目标优化问题附matlab代码

686次阅读
没有评论

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

智能优化算法是一种通过模拟自然界中的生物进化和行为来解决复杂问题的方法。这些算法通过模拟自然界中的优化过程,以寻找最优解或接近最优解的解决方案。在过去的几十年中,许多智能优化算法已经被提出和应用于各种领域,如工程设计机器学习和数据挖掘等。

在本文中,我们将介绍一种新的智能优化算法——基于暴龙优化算法(TROA)的单目标优化问题求解方法。TROA是一种模拟暴龙群体行为的算法,通过模拟暴龙狩猎、迁徙和竞争等行为来解决优化问题。

TROA算法的基本思想是将优化问题转化为一个暴龙群体的生态系统模型。在这个模型中,每个暴龙代表一个解决方案,而暴龙的适应度则表示该解决方案的优劣程度。算法通过模拟暴龙的狩猎行为来更新解决方案,以寻找更好的解决方案。具体来说,算法首先初始化一个暴龙群体,然后通过计算每个暴龙的适应度来评估解决方案的质量。接下来,算法通过模拟暴龙的迁徙行为来更新解决方案,以增加解决方案的多样性。最后,算法通过模拟暴龙的竞争行为来选择优秀的解决方案,并将其作为下一代暴龙的种子。

与其他智能优化算法相比,TROA具有以下几个优点。首先,TROA通过模拟暴龙的行为来解决优化问题,而暴龙在自然界中以其强大的狩猎能力和竞争力而闻名。因此,TROA可以更好地捕捉到问题的特征和结构,从而提供更好的解决方案。其次,TROA具有较好的全局搜索能力和局部搜索能力,可以在搜索空间中寻找到全局最优解或接近最优解的解决方案。最后,TROA具有较好的收敛性和稳定性,可以在较短的时间内找到满意的解决方案。

然而,TROA也存在一些挑战和限制。首先,TROA的性能高度依赖于参数的设置,不同参数的选择可能导致不同的结果。因此,如何选择合适的参数是一个关键问题。其次,TROA可能陷入局部最优解,特别是在问题的搜索空间非常复杂或存在多个局部最优解的情况下。因此,如何提高TROA的局部搜索能力是一个重要的研究方向。

总之,基于暴龙优化算法的单目标优化问题求解方法是一种新颖而有效的智能优化算法。通过模拟暴龙的行为,TROA可以更好地捕捉到问题的特征和结构,并提供更好的解决方案。然而,TROA也面临一些挑战和限制,需要进一步的研究和改进。我们相信,在未来的研究中,TROA将在各个领域中发挥重要作用,并为解决复杂问题提供更好的解决方案。

🔥核心代码



function [lowerbound,upperbound,dimension,fitness] = fun_info(F)

switch F case 'F1' fitness = @F1; lowerbound=-100; upperbound=100; dimension=30; case 'F2' fitness = @F2; lowerbound=-10; upperbound=10; dimension=30; case 'F3' fitness = @F3; lowerbound=-100; upperbound=100; dimension=30; case 'F4' fitness = @F4; lowerbound=-100; upperbound=100; dimension=30; case 'F5' fitness = @F5; lowerbound=-30; upperbound=30; dimension=30; case 'F6' fitness = @F6; lowerbound=-100; upperbound=100; dimension=30; case 'F7' fitness = @F7; lowerbound=-1.28; upperbound=1.28; dimension=30; case 'F8' fitness = @F8; lowerbound=-500; upperbound=500; dimension=30; case 'F9' fitness = @F9; lowerbound=-5.12; upperbound=5.12; dimension=30; case 'F10' fitness = @F10; lowerbound=-32; upperbound=32; dimension=30; case 'F11' fitness = @F11; lowerbound=-600; upperbound=600; dimension=30; case 'F12' fitness = @F12; lowerbound=-50; upperbound=50; dimension=30; case 'F13' fitness = @F13; lowerbound=-50; upperbound=50; dimension=30; case 'F14' fitness = @F14; lowerbound=-65.536; upperbound=65.536; dimension=2; case 'F15' fitness = @F15; lowerbound=-5; upperbound=5; dimension=4; case 'F16' fitness = @F16; lowerbound=-5; upperbound=5; dimension=2; case 'F17' fitness = @F17; lowerbound=[-5,0]; upperbound=[10,15]; dimension=2; case 'F18' fitness = @F18; lowerbound=-2; upperbound=2; dimension=2; case 'F19' fitness = @F19; lowerbound=0; upperbound=1; dimension=3; case 'F20' fitness = @F20; lowerbound=0; upperbound=1; dimension=6; case 'F21' fitness = @F21; lowerbound=0; upperbound=10; dimension=4; case 'F22' fitness = @F22; lowerbound=0; upperbound=10; dimension=4; case 'F23' fitness = @F23; lowerbound=0; upperbound=10; dimension=4; end
end
% F1
function R = F1(x)R=sum(x.^2);end
% F2
function R = F2(x)R=sum(abs(x))+prod(abs(x));end
% F3
function R = F3(x)dimension=size(x,2);R=0;for i=1:dimension R=R+sum(x(1:i))^2;endend
% F4
function R = F4(x)R=max(abs(x));end
% F5
function R = F5(x)dimension=size(x,2);R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);end
% F6
function R = F6(x)R=sum(abs((x+.5)).^2);end
% F7
function R = F7(x)dimension=size(x,2);R=sum([1:dimension].*(x.^4))+rand;end
% F8
function R = F8(x)R=sum(-x.*sin(sqrt(abs(x))));end
% F9
function R = F9(x)dimension=size(x,2);R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;end
% F10
function R = F10(x)dimension=size(x,2);R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);end
% F11
function R = F11(x)dimension=size(x,2);R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;end
% F12
function R = F12(x)dimension=size(x,2);R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));end
% F13
function R = F13(x)dimension=size(x,2);R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));end
% F14
function R = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
for j=1:25 bS(j)=sum((x'-aS(:,j)).^6);endR=(1/500+sum(1./([1:25]+bS))).^(-1);end
% F15
function R = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end
% F16
function R = F16(x)R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end
% F17
function R = F17(x)R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end
% F18
function R = F18(x)R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*... (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end
% F19
function R = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];R=0;for i=1:4 R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend
% F20
function R = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];R=0;for i=1:4 R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend
% F21
function R = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;for i=1:5 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend
% F22
function R = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;for i=1:7 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend
% F23
function R = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;for i=1:10 R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend
function R=Ufun(x,a,k,m)R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end


❤️ 运行结果

【智能优化算法】基于暴龙优化算法TROA求解单目标优化问题附matlab代码

【智能优化算法】基于暴龙优化算法TROA求解单目标优化问题附matlab代码

【智能优化算法】基于暴龙优化算法TROA求解单目标优化问题附matlab代码

⛄ 参考文献

Venkata Satya Durga Manohar Sahu, Padarbinda Samal, Chinmoy Kumar Panigrahi,”Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems”,e-Prime – Advances in Electrical Engineering, Electronics and Energy,Volume 5,2023,100243,ISSN 2772-6711,https://doi.org/10.1016/j.prime.2023.100243.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy