好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENet

1,189次阅读
没有评论

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENet标题&作者团队

【Happy导语】该文是阿里巴巴提出了一种GPU端高效&高精度网路架构设计新方案。不同于之前的MobileNet、EfficientNet以及RegNet等网络采用相同的模块构建整个网络,该文对不同阶段的模块进行分析并得出这样的结论:在网络的low-level阶段采用BasicBlock,而在high-level阶段采用Bottleneck/InvertedResidualBlock可以最大化的利用GPU并得到更快的推理速度与模型精度(精度高达81.3%且速度超快)。Happy建议对网络架构有兴趣的朋友可以仔细看一下原文,文末附论文下载链接。

Abstract

在工业界大多算法均是基于GPU进行推理,这就要求AI算法不仅应当具有高识别率,同时还要具有更低的推理延迟。尽管已有诸多研究尝试优化深度模型的架构以进行更有效的推理,然而它们并未充分利用现代GPU的架构进行快速推理,从而导致了次优性能。

为解决上述问题,作者在大量实验研究的基础上提出了一种GPU端高效网络设计的通用范式,该设计范式促使作者仅需要采用简单而轻量的NAS方法即可得到高效且高精度的GPU端网络架构。基于所设计的网络架构设计范式,作者提出了一类GPU端高效的网络,称之为GENet。

作者在多个GPU平台与推理引擎下对所得到的网络进行了充分的评估,所提方法不仅在ImageNet上取得了不低于81.3%的top1精度,而且在GPU端比EfficientNet快6.4倍。与此同时,所提方法同样优于其他效率高于EfficientNet的SOTA方法。

该文的主要贡献有如下:

  • 提出一种新颖的GPU端高效网络架构设计空间;
  • 基于所设计网络架构范式,提出一种轻量而高效LLR-NAS(Local-Linear Regression NAS)方法进行GPU端高效网络架构搜索;
  • 所得到的GENet不仅具有媲美EfficientNet的高精度,而且具有更快的推理速度。

Network Design Space

在这部分内容中,我们将主要介绍一下如何一步步得到所提网络架构设计空间。首先介绍一下主流网络中常用的三种基本模块,然后对其推理速度进行了分析,最后基于实验分析得出网络架构设计空间范式。

Basic Block and MasterNet Backbone

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627164927617

上图a给出了目前网络架构设计中的主流架构(ResNet、ResNeSt、EfficientNet、RegNet、MobileNet等等均采用了类似的架构体系)形态,这也是该文的架构形态。

作者将该架构形态称之为MasterNet,它的每个阶段称之为Super-Block,每个Super-Block由同类型的多个BasicBlock构成,每个BasicBlock由深度、宽度以及stride等参数进行描述。一般而言,Super-Block的第一个模块采用stride=2进行特征下采样,后续模块采用stride=1的模式。而MasterNet的第一层是一个stride=2的stem模块;MasterNet的最后为GAPHead模块(它包含一个全局均值池化与一个全连接层,用于分类)。现有研究已经证实:上述网络架构形态足以得到GPU端的高性能低延迟的网络架构。而不同网络架构的关键区别在于BasicBlock的差异。而这也是本文的关注重点。

在BasicBlock方面,作者考虑了三种类型的模块(见上图b),分别如下:

  • XX-Block(ResNet18、ResNet34中的基本模块);
  • BL-Block(ResNet50、ResNet101中的基本模块);
  • DW-Block(MobileNetv2的基本模块)。

上图c则给出了上述模块嵌入到残差模块中的示意图以及stride=2时的模块示意图。

GPU Inference Latency

作者对上述三个模块在GPU端的推理速度进行可控实验分析,所有耗时实验均重复30次,剔除10最低与最高后进行平均统计。作者在NVIDIA V100硬件平台下采用FP16精度和分辨率进行实验。不同角度的实验分析如下。

  • BatchSize。下图a给出l不同BatchSize下ResNet50、ResNet152、MobileNetV2、EfficientNet-B0的推理延迟。从图中可以看到:推理延迟并非常数,会随BatchSize而变化,这是因为大的BatchSize允许GPU进行并行计算从而更高效。因此,在进行推理延迟对比时必须制定BatchSize,在该文中作者默认设置BatchSize=64。事实上,这种推理耗时更符合实际需求,我们一般评价一个模型的速度看到是其吞吐量(一块GPU倍充分利用时每秒钟能处理多少张图片),而非一个样例的一次推理。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627171050232

  • FLOPs & Model Size。FLOPs是一种“流行”的用来评价模型效率的准则。但是“FLOPs低不等于效率高”,上图也说明了这一点。尽管EfficientNet号称具有非常低的FLOPs,但它的推理速度反而慢。同时,推理速度也不与模型参数量存在线性关系。这一点其实在ShuffleNetV2、RegNet、OFANet等方法中均有阐述,感兴趣的可以去看一下相关论文。

  • BasicBlocks。这里将对前面所提到的三种模块进行分析研究。在实验设计中,基于XX-Block的网络包含5个XX-Block,而BL-Block与DW-Block的网络则包含10个模块。推理速度见下图,从图中可以看到:(1)DW-Block的推理速度要快于BB-Block;(2)当r=1时,BL-Block的推理速度要比XX-Block更慢(这个很正常,两个r=1的BL-Block明显比XX-Block大)。仅仅从上图a和b出发,可能采用BL-Block或者DW-Block更为合理(这也是ResNet与EfficientNet的设计范式)。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627172032376

  • Model Capacity。作者认为除了上述分析外,还有另外一个维度需要考虑,那就是Model Capacity,它将影响模型的拟合能力。关于Model Capacity的一个简单度量准则是模型参数量。实验分析见上图c和d,从中可以看到:在相同Model Capacity下,XX-Block事实上非常高效。从某种角度来讲,BL-Block与DW-Block是XX-Block的低秩近似。但BL-Block与DW-Block接近满秩近似时,相应模块实际上是低效的。也就是说:BL/DW-Block是否比XX-Block更高效依赖于网络的特定层是否倾向于低秩架构

Intrinsic Rank of Convolutional Layers

受启发于上述分析,作者尝试对不同阶段的卷积进行分析。主要针对ResNet18和ResNet34两个网络进行了分析,因ResNet50等更深网路采用的BL-Block故而被排出在外。第三个网络是作者手动设计的网络,称之为ProfilingNet132.三个网络均在ImageNet数据集上训练360epoch。

下图给出了不同阶段最后一个卷积核的奇异值分布,注:奇异值进行了归一化处理。从图中可以看出:high-level的奇异值衰减的更快,这也就意味着:应当在网络的low-level阶段采用XX-Block,而在网络的high-level阶段采用BL/DW-Block以最大化GPU推理效率

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627173905240

GPU-Efficient Networks

前述实验给出了本文的核心:GPU端高效网络设计范式。作者基于该先验信息设计GPU端高效网络。作者首先采用手动方式设计MasterNet,然后将其作为LLR-NAS的初始网络并进行优化。

Design MasterNet

为得到一个好的初始化架构,作者设计了20个网络。所有网络均具有0.34ms推理延迟(注:BatchSize=64,这也是ResNet50、EfficientNet的推理延迟)。作者在ImageNet上分别对这20个网络训练120epoch。对于BL-Block,作者固定;对于DW-Block,作者固定。实验结果见下表,注:这里仅提供了4个最佳。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627183806295

注:上表第一列表示网络ID,第二列表示模块类型(C表示常规卷、X表示XX-Block,B表示BL-Block,D表示DW-Block),第三列表示不同阶段的模块数,第四列表示不同阶段的通道数,第五列表示不同阶段的stride信息,最后一列表示模型的精度。表中结果验证了前述分析结论,最佳的模型均为low-level阶段采用XX-Block,在high-level采用BL/DW-Block。

作者选用Net1作为初始MasterNet,需要注意的是MasterNet的参数配置对应并不大,因为后面作者将采用NAS进行最终模型的搜索。当然Net2与Net3也是MasterNet的不错选择。

Local Linear Regression NAS

作者提出采用NAS方式搜索MasterNet的结构,所用的NAS称之为LLR-NAS。假设MasterNet包含M的Super-Block,每个Super-Block可以参数化为(分别表示深度、通道数以及模块类型),除了模块类型外,作者将不同核尺寸和参数的模块视作不同的模块类型。

LLR-NAS的流程如下:

  • Distillation:对于,采用随机模块进行初始化,微调直至收敛并得到对应网络的验证精度。重复该步骤直到每个类型的包含N个微调精度
  • Regression:假设表示MasterNet的精度,采用最小二乘进行回归估计伪梯度。基于该伪梯度,我们就可以预测网络结构在不同参数下的精度。
  • Selection:随机生成大量结构并采用上述伪梯度计算其精度,最后选择具有最佳推理速度的模型。

与此同时,作者在不同分辨率输入下采用上述伪梯度进行最佳网络架构搜索,所选择的架构在对应分辨率下进行训练,最终选择训练后具有最佳精度的模型作为对应分辨率下的最优模型。注:作者分别设置延迟耗时为0.34/0.2/0.1三种约束得到了GENet-Large/GENet-normal/GENet-light。

Experiment

在该部分内容中,作者对比了ResNet、EfficientNet、MnasNet、MobileNetV2、DNANet、DFNet、OFANet以及RegNet等网络架构。

在ImageNet数据集上对比了模型精度,在LLR-NAS阶段,随机从训练集中采样50000样本作为验证集。每个SuperBlock以0.01学习率,BatchSize=256微调30epoch,卷积核尺寸可调空间,输入分辨率可调空间,参数r的可调空间分别为(对应BL-Block)和(对应DW-Block),LLR-NAS阶段在24V100GPU上训练60小时。而最终的模型训练480epoch,同时采用了标签平滑、mixup、random-erase、AutoAugment等训练技巧。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627201534335

上表给出了GENet在不同约束下的网络架构配置信息,可以看到其中的DW-Block搜索的参数,这与EfficientNet中的完全不同。对比GENet的三种不同配置,可以看到:GENet-large网络提升high-level阶段的深度而降低了low-level阶段的深度。最后两行还给出了不同配置模型的FLOPs与分辨率输入。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627202133729

为评估所得到的网络在GPU端的推理速度,作者考虑了三种配置:(1) NVIDIA V100-FP16(大多论文中常用配置);(2) NVIDIA T4-FP16+TensorRT(推理端评测);(3) NVIDIA T4-INT8+TensorRT(推理端评测,采用TensorRT内置量化工具进行INT8量化)。不同模型的精度与耗时见上图,可以看到:GENet以明显优势优于其他网络。在相同推理速度下,GENet-large以5.0%的指标优于EfficientNet-B0,达到了81.3%的精度且比EfficientNet-B3更快。尽管GENet是针对V100而优化得到的,但它对于T4GPU同样高效,这侧面表明了GENet跨GPU平台的迁移性能

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627202757734

上表给出了不同网络在相似精度下的推理延迟对比,可以看到:(1) 更高精度时,GENet的优势更明显。(2) 除了EfficientNet-B3与GENet-large外,其他网络均无法达到超过81%的指标。(3) 在T4+TensorRT+INT8配置(工业界常见配置)下,GENet-large以6.4倍的速度快于EfficientNet-B3,GENet-normal以6.8倍速度快于EfficientNet-B2,以4.2倍速度u快于OFANet。不同硬件下的精度与速度对比见下面三个图。

好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627203803401好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627203746044好快好强 | GPU端精度最高、速度最快的Backbone模型担当GENetimage-20200627203730296

Conclusion

阿里巴巴的研究员提出了一类针对GPU的高效网络架构设计空间,结合该设计空间于半自动NAS技术得到了GPU端高效网络GENet。GENet倾向于在low-level阶段使用全卷积,而在high-level阶段使用深度分离卷积或者Bottleneck结构。

最后作者通过实验证实了所提网络架构设计空间的优异性能,在具有高精度的同时还具有高推理速度,你说气人不人。

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 10 月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25 鹭羽 2025-12-13 22:37...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...
商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1 十三 2025-12-15 14:13:14 ...
跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026

跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026 一水 2025-1...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地

预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地

预见未来:96位前沿先锋超万字核心观点总结,抢抓未来产业新高地 henry 2025-12-11 10:27:...
Meta公开抄阿里Qwen作业,还闭源了…

Meta公开抄阿里Qwen作业,还闭源了…

Meta公开抄阿里Qwen作业,还闭源了… Jay 2025-12-11 11:48:25 来源:量子位 Ja...
MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这

MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这

MEET2026挤爆了,AI圈今年最该听的20+场演讲&对谈都在这 西风 2025-12-11 15:...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...