音乐驱动数字人技术详解

876次阅读
没有评论

音乐驱动数字人技术详解

音乐驱动数字人技术详解

导读 本文主题为音乐驱动数字人的算法和实践。

主要围绕下面四点展开:

1. 音乐驱动体系 Music XR Maker

2. 音乐生成数字人舞蹈

3. 歌声驱动数字人口型

4. 歌声驱动数字人歌唱表情

分享嘉宾|董治 腾讯音乐 天琴实验室 计算机视觉负责人

编辑整理|苏丽萍 彩讯股份

出品社区|DataFun

01

音乐驱动体系 Music XR Maker
Music XR Maker 源于天琴实验室,天琴实验室是腾讯音乐首个音视频实验室,致力于通过 AI 科技提升音娱视听体验,也是腾讯音乐的首个音视频技术研发中心。天琴实验室在视频、视觉方面主要做的事情包括两方面,一方面是 Music XR Maker 以及图像渲染技术,另一方面是视频相关,比如视频理解、音乐视频化、视频质量提升等。1.音乐驱动在数字人技术栈中的定位在数字人技术栈中,音乐驱动的定位可分为三个部分:① 形象构建:在形象构建过程中,涉及到的技术包括模型制作、拍照捏脸、拍摄建模、服饰生成等。② 人物驱动:人物驱动分成两个体系,第一个是基于中之人,背后有真实人物在驱动;第二个是 AI 驱动。在音频和视觉上,两个体系都有对应的实现:在音频声音这块,中之人直接用中之人的声音,AI 驱动在说话方面有 TTS 技术,歌曲歌声方面对应有歌声合成技术。在面捕这块,可以实时把中之人的面部表情捕捉到位,AI 生成则有说话口型生成、歌唱口型生成、说话表情生成、歌唱表情生成等。在动作和手势方面,也有相应的动作捕捉、手势捕捉,在音乐领域也有对应的舞蹈动作生成和乐器手势生成。③ 可视化渲染:当成功将建立的模型驱动起来后,需要让普通用户看得到模型,这就涉及到可视化渲染。比如虚拟偶像视频分发到各种视频平台、虚拟主播开虚拟直播、互动娱乐多人互动等。

音乐驱动数字人技术详解

2.Music XR Maker 音乐驱动研发体系建设Music XR Maker 着重音乐,可以理解为基于音乐内容做虚拟元素的创建,实质是属于 AI 驱动当中的音乐驱动,可以驱动的项目包括歌声合成、歌唱口型生成、舞蹈动作生成、乐器手势生成、歌唱表情生成等,还包括后续将会逐步迭代加入的场景灯效舞美。Music XR Maker 音乐驱动研发体系建设包括:① 数据源:建设 Music XR Maker 体系在数据层面分成两个部分:一是建模动作口型生成必须要有数据来源,目前大部分来源是动捕或面捕数据,还有手势捕捉数据等;二是既然把数据跟音乐关联,就要有非常强的音乐理解能力,包括音乐风格、情绪、音乐旋律、能量、歌曲的节奏、段落等。② AI 生成:有了基础数据后,就通过核心 AI 生成的算法把两方面数据进行关联。算法有两种类型:一类是端到端模型,包括分类预测模型、关联点预测、生成类模型等;另一类是 AI 编排生成算法,相对复杂且涉及多种步骤,还会使用到类似搜索或推荐等做法,可以分成召回、排序、重排三个阶段:在召回阶段,对输入信号进行关联解析数据;在排序阶段,根据歌曲节奏、歌曲热度、个性化等排序;在重排阶段,进行时序连贯性、段落关联性等调整。③ 3D 渲染:通过 AI 生成得到驱动数据后,要打通完整商业化链条还需要进行 3D 渲染,这是必不可少的一环。首先需要渲染引擎,像常用的 Unity 、UE,还需要专业的 3D 数据格式,像 SMPL、GLB、FBX 等;同时也需要生产力工具,像 Blender、Maya 等。产品应用:对企业来说,最后一环就是真正落地应用到具体产品。落地应用分两种类型:一种是有用户参与的互动娱乐应用,以 QQ 音乐的音乐世界、音乐直播的云蹦迪直播、全民 K 歌的 KK 秀、TMEland 等为代表;另一种是在娱乐公司比较常见的虚拟人代表,比如已公开的扇宝、安可、持续在研发的虚拟人项目,曝光的场景包括虚拟偶像视频、虚拟直播、重要节点开虚拟演唱会等,都是虚拟偶像展现的地方。

音乐驱动数字人技术详解

02

音乐生成数字人舞蹈1. 虚拟人舞蹈的产生方式数字人舞蹈的生成方式大致分成三种:① 动捕棚:采用目前比较新的多目动捕设备、惯性捕捉,得到的效果是真正影视级效果,也是目前能接触到的最佳效果。但存在价格昂贵,人力、设备成本高等问题。应用场景来说,可用于精品视频输出。② 视频复刻:属于单目动捕,用于普通的低精度场景效果还不错,但运用到非常激烈的快节奏舞蹈,特别是运用到高精度模型,效果上存在细节丢失。这种方式人力成本相对较低,所以在低精度模型场景上应用较多。视频复刻有个非常明显的优势是其他方式达不到的,它可以很好抓住热点。现在的短视频类平台每隔一段时间都会出一些热点舞蹈,通过这种方式可以快速的把热门舞蹈实时复刻出来。③ 基于音乐生成:属于纯算法生成,效果依赖数据质量和算法自身好坏。存在的问题是数据获取困难,优势在于可以批量生产场景。在批量场景下,可以和精品视频进行互补,在日常视频输出可以用到这种基于音乐生成舞蹈的方案。

音乐驱动数字人技术详解

2. 音乐生成数字人舞蹈的业内方案业内有很多音乐生成数字人舞蹈的方案,大致有如下几种:① 基于生成的方案:非常具有想象力的方案,但商用可能存在不可控情况。② 基于 codebook:对比于生成的方案进行改进,加入了 codebook 等方式,对生成的舞蹈规律有一定约束,是非常不错的方案。③ 基于舞蹈编排:实验的难度和实现的可行性更高一些。

音乐驱动数字人技术详解

面向商用的舞蹈生成如何做,有三点因素需要考虑:一是舞蹈动作本身是美观的动作;二是舞蹈动作和音乐的节奏、韵律要和谐一致;三是音乐和舞蹈的风格也要一致。所以在 AI 编舞时重点会关注音乐特征,包括音乐本身的特性、音乐节奏等,对舞蹈也会做对应匹配,包括舞蹈属性、风格、情绪、节奏快慢等。综合来看,商用舞蹈生成是在有原始音频文件后,通过一些方法提取音频特征,接着通过特征回归到舞蹈动作,最后将这些动作合理的拼接起来。

音乐驱动数字人技术详解

3. TME 天琴方案下方是 TME 天琴方案的生成算法截图。当拿到一段音乐后,切成一帧一帧的小片段,接着对每一帧提取对应的音乐属性特征,包括旋律、节奏等最能代表音乐和舞蹈的特征,然后去匹配最合适的舞蹈片段,同时基于音乐节奏、风格类型,对召回的片段进行重新排序,过滤掉不太适合的片段,最终把对应的片段进行拼接,就形成一段完整舞蹈。这里还涉及一个问题,舞蹈动作可能前后段连接有问题,可通过平滑算法进行过渡来解决。这个方案实际应用起来比较简单,而且可以直接使用。但这个方案存在一定问题,因为想象力不够,生成的方案多样性略差。音乐驱动数字人技术详解另外一套方案是基于生成的方案。输入一段音频信号,对应的原始样本音频会关联到对应的舞蹈,输入模型中经过一个过程,还原回最初的舞蹈动作。在这个过程中,要把音频信号特征和舞蹈信号特征尽量拉齐,尽量表达更广泛的含义。当音乐生成数字人舞蹈完成后,可以进行主观评测。针对同样一首歌,把生成的舞蹈和手 K 的舞蹈动作发给普通用户进行对比,选取两种方式对比:第一个方式是直接对比生成结果和手 K 结果,让用户选择哪种更好;第二个方式是把生成结果和手 K 结果分别进行打分。经过评测发现,两种方式的结论类似,生成结果已经接近手 K 的效果,总体效果不错。4. 数字人舞蹈的商用路径在数字人舞蹈的商用路径方面理解如下:首先,通过动捕棚拍摄、CP 手 K 效果最好,会应用到虚拟偶像、虚拟主播的精品 MV、形象宣传片,同时这类高质量舞蹈数据可以保留下来。第二,单目的视频复刻主要用到虚拟主播、虚拟偶像、用户互动娱乐场景的爆款舞蹈生成。生成数据可以经过人工筛选,把中质量舞蹈数据保留下来。最后,把之前保留下来的高质量舞蹈数据和中质量舞蹈数据,作为 AI 舞蹈生成模型的数据来源,生成的舞蹈数据就作为量产数据,用在虚拟偶像、虚拟主播、用户互娱场景,批量生产更多的舞蹈动作。 

音乐驱动数字人技术详解

03歌声驱动数字人口型1. 歌声驱动数字人口型方案歌声驱动数字人口型有两种实现方案:① 专业面捕方案有专业设备、配套软件,优点是效果最佳,无限表情基。广泛应用于超写实虚拟人场景。② 普通光学摄像头方案:通过普通手机摄像头可以实现,一般场景下效果完全可接受,标准 52 BS。适用于一般的虚拟人场景。

音乐驱动数字人技术详解

2. 口型驱动数据集构建在口型驱动数据数据建设上,把全民 K 歌软件的用户 K 歌视频画面保留下来,同时录入用户唱歌干声数据。通过前面提到的单目动捕方案,把唱歌画面进行口型识别,拿到口型 BS 数据,再加上保留下来的用户唱歌干声数据,同时输入到歌声口型驱动模型。

音乐驱动数字人技术详解

歌唱驱动和说话驱动有差别:说话时嘴巴动的频率比较快,但是唱歌时因为要一口气唱下去,嘴巴表现更有连贯性;同时说话时嘴巴动的幅度没有歌唱时幅度大,这也是专门做歌唱口型驱动模型的原因。3. TME 口型驱动模型TME 口型驱动模型的方案同时用到两部分数据:一个是用户输入的干声数据,一个是歌词文件(歌词文件经过前处理,对歌词文件和音频做对齐,拿到每一个字精准的时间戳)。对输入音频和歌词做 Encoder 处理后,进行融合。把融合结果输入到另一个面部匹配预测模块,该模块会将当前帧的歌词、音频信息同之前全部帧的信息放在一起,做一个 Decoder 处理。最终预测到整首歌匹配变化后再转换为所需要的模型参数。4. 实时性解决方案前面是异步生成视频的场景,实时性如何解决有如下考虑:先离线生成预设  BlendShape,输入测试文件及干声数据,干声来源于两个部分:一是之前用户唱的优秀作品干生;二是歌曲原唱,通过技术提取原唱的干声,然后把各式文件和综合干声,通过前面的口型驱动模型,得到预设 BlendShape。等到真正实施时,用户实时干声经过音频映射模型,得到实时音频分析结果,和前面的预设 BlendShape 进行融合,最后得到实时 BlendShape。这样就解决了实时性问题,同时兼备口型生成的效果。 

音乐驱动数字人技术详解

实时性解决方案的相关技术已经上线应用,在全民 K 歌 8.0 的 QQ 秀可以体验到:一个场景是用户入唱时,会有 K 歌秀界面,一边唱一边可以看到 QQ 秀虚拟人的动作、口型等;另一个是在歌场景也有类似体验。04歌声驱动数字人歌唱表情当做好数字人歌唱口型后,发现人显得比较呆。分析专业歌手演唱表演,发现唱歌时要表达歌唱情感,除了口型之外,歌唱时的面部表情、手势、动作都要同时具备,三者合一的完整表现才能突出演唱者当时的强烈情感。1. 歌唱表情数据的采集歌声驱动数字人歌唱表情的实现需要进行数据采集。数据采集时先找到带表情的演唱视频样本,通过面捕拿到面部表情,通过动捕拿到动作,通过手捕拿到手势,然后把表情、动作和手势合一,融入歌唱表情段,经过人工表情打标后放入歌唱表情库。音乐驱动数字人技术详解2. 歌唱表情的合理驱动采集到歌唱表情之后,需要合理的驱动起来。经过歌词文本分析拿到歌唱时歌词的表情信息,确定整个歌唱表演的表情基调。此时可以从庞大的各种类型表情库里,挑选出合适的表情,适合于在歌曲或者歌曲的某一个片段安插表情。05

总结与展望

这两年上线了很多与虚拟人或元宇宙相关的平台和产品,娱乐公司、明星、大型商业公司、海量主播、普通用户等很多都有自身的虚拟形象,虚拟形象将变得越来越普遍中之人面临越来越多的问题,比如成本问题、管理问题、虚拟形象的灵魂归属于虚拟偶像本身还是中之人。AI 驱动技术面临快速升级,包括形象创建技术、视觉驱动技术、音频歌声合成技术等。TME 以音乐为核心进行技术建设,包括音乐驱动数字人舞蹈、数字人歌唱口型、数字人歌唱表情等,未来还有其他方面。总体来说,数字人的未来在于技术。06问答环节Q1:动捕数据或公开数据集重定向到模型驱动有问题时如何处理?A1:确实会存在重定向的问题。主要是先重定向到一些标准模型,然后再通过人工发现有问题的数据,对有问题的数据进行分类:如通过手动可以小范围解决的,就进行修复;如解决不了,就直接把数据抛弃掉。Q2:音乐生成数字人舞蹈的客观评测方法?A2:因为音乐生成数字人舞蹈是偏向主观的一个领域,生成的东西不可能跟原始的一样,如果跟原始一样,那就没有什么意义了。所以音乐生成数字人舞蹈更多的是一些主观评测。Q3:现在主要研究的是卡通类型的数字人吗?A3:现在主要研究的是在卡通类型的数字人,目前没有太涉及写实虚拟人方面。

Q4:拼接的单元是小节吗?

A4:拼接的单元不是小节。这里涉及到一些细节,比如根据音乐的节奏进行切分,并不是简单的切几秒钟舞蹈片段,需要把舞蹈片段切的更便于后续的拼接。今天的分享就到这里,谢谢大家。

音乐驱动数字人技术详解

音乐驱动数字人技术详解

分享嘉宾

INTRODUCTION

音乐驱动数字人技术详解

董治

音乐驱动数字人技术详解

腾讯音乐 天琴实验室

音乐驱动数字人技术详解

计算机视觉负责人

音乐驱动数字人技术详解

腾讯音乐天琴实验室计算机视觉技术负责人,视觉领域十多年研发经验,负责和音乐关联的 XR 生成技术,以及视频算法方向。在 TME 内部多个虚拟形象上,通过舞蹈、口型的 AI 驱动算法,大幅度降低驱动成本。同时主导了音乐视频化、端云一体质量提升、直播 AI 等视频项目。相关研发成果获得 TME 内部创新奖和成本优化奖,累计提交和授权的发明专利 60+ 篇。

音乐驱动数字人技术详解
音乐驱动数字人技术详解 点击关注,更多信息更新中

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy