B站如何构建高效的数据预处理和模型训练AI平台?

654次阅读
没有评论

Coeus是哔哩哔哩自主研发的云原生人工智能平台。目前,Coeus 支持广泛的用例,包括广告、简历、NLP、语音、电子商务等。从功能角度来看,Coeus支持模型开发、模型训练、模型存储和模型服务。 

B站如何构建高效的数据预处理和模型训练AI平台?

上图描述了架构和组件。Coeus是在Kubernetes上实现的,并集成了许多云原生组件,包括Volcano、VPA、Hawkeye(自研的云原生可观测系统)、Alluxio和Fluid。 

Coeus 使用 Alluxio 来桥接底层存储系统(OSS 和 HDFS)和 AI 应用程序(基于 Pytorch 和 Tensorflow视频和图像训练作业)。

B站使用 Alluxio 作为 AI 平台计算和存储之间的中间层,克服了4大挑战:

  • 容器崩溃
  • 用户必须更改应用程序代码才能访问OSS和HDFS
  • 数据太大,一台机器无法容纳
  • 反复从远程存储拉取数据速度慢

不仅使哔哩哔哩的机器学习工作负载性能提升了3倍,还降低了基础设施成本并提高了模型训练质量。除了B站,通过Alluxio来解决模型训练时效率低、成本高、可靠性低,可扩展性差等诸多难题的,还有支付宝、知乎等头部大厂。欢迎大家免费下载第四期宝典PyTorch模型训练性能调优宝典》,了解更多实践案例。本电子书是解决PyTorch训练性能和效率问题的首选宝典资料目录:

B站如何构建高效的数据预处理和模型训练AI平台?

B站如何构建高效的数据预处理和模型训练AI平台?


扫码即可免费下载

B站如何构建高效的数据预处理和模型训练AI平台?


本宝典中介绍的技术适用于对PyTorch的基础设施及其使用的资源进行调优。这些调优技巧适用于所有模型算法,包括CNNs、RNNs、GANs、transformers(如GPT、BERT)等,且适用于所有领域,如计算机视觉、自然语言处理等。

B站如何构建高效的数据预处理和模型训练AI平台?

核心要点:📌

PyTorch的基础知识,包括张量、计算图、自动微分以及神经网络模块的工作原理;

影响机器学习流程中模型训练性能的因素;

优化PyTorch模型训练的分步过程;

在数据加载、数据操作、GPU处理和CPU处理方面的最佳调优技巧,附有代码示例。通过这些技巧,平均训练epoch时长可缩短至原先的1/5-1/10;

在真实生产环境中使用Alluxio作为数据访问层为模型训练赋能的案例研究。

面向人群:🧐

适用对象包括AI/ML平台工程师、数据平台工程师、后端软件工程师、MLOps工程师、站点可靠性工程师、架构师、机器学习工程师以及任何希望掌握PyTorch性能调优技巧的专业人士。

扫码立即免费下载

B站如何构建高效的数据预处理和模型训练AI平台?

特别感谢!

翻译支持:Roise,熊迪,Polarish,曹明

特别感谢以上4位Alluxio社区志愿者对《PyTorch模型训练性能调优宝典》翻译工作的支持!

鸣谢

👇点击“阅读原文”亦可下载

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy