媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

1,386次阅读
没有评论

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

  新智元报道  

编辑:编辑部

【新智元导读】文生视频,直接被革命了!Meta连发两个重磅研究,多模态模型Emu的变体 Emu Video和Emu Edit联动解锁生成式AI未来。


就在刚刚,Meta一连解锁两个重磅研究,生成式AI,再次到达全新的里程碑!

Emu Video,是一种基于扩散模型的文本到视频生成方法,可以分解步骤生成高质量的视频。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

论文地址:https://emu-video.metademolab.com/assets/emu_video.pdf

经过Emu Video处理过的视频,具有高度的风格化,当图像动起来、添加运动之后,一切变得如此栩栩如生。

兔子手中忽然就变出一只小号,然后开始开心地跳舞,然后小号变成了彩虹色,兔子开始随着音乐惬意地慢摇。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

下一秒,兔子就戴上了VR眼镜,在夏威夷的海岛上散步,然后开始跳起草裙舞,又变身DJ、粉色金发娃娃……

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

Emu Edit,可以仅仅基于文本指令就对图像进行编辑,通过识别和生成任务,编辑得格外精确。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

论文地址:https://emu-edit.metademolab.com/assets/emu_edit.pdf

Emu Edit对于指令遵循得如此精准,以至于能确保输入图像中与指令无关的像素保持不变。

比如,让一杯橙汁出现在游泳池边,它立马完美地瞬移了。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

我们还可以让这杯橙汁变成一个金色的高脚杯,背景还可以瞬穿到文艺复兴时期。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

网友惊呼,这简直是AI生图的下一个里程碑!

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

Emu Video:高质量视频生成「分解法」


目前,视频生成中最主流的方式,就是使用扩散模型一次性生成所有的帧。

而与之形成鲜明对比的是,在NLP中,长序列生成被表述为一个自回归问题——根据先前预测的单词来预测下一个单词。这样,每个后续预测的调节信号就逐渐变强。

由于视频本质上是时间序列,因此可以假设加强调节信号对于高质量的视频生成也很重要。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

An Emu on a ski trip, 4k, high resolution

但这其中就有一个问题:使用扩散模型的自回归解码很有挑战性,因为从此类模型生成单个帧,本身就需要多次迭代。

Meta研究者想到的办法是,将文本到视频的生成分解为两个子问题——

1. 根据输入文本提示生成图像;

2. 基于图像和文本的更强条件生成视频。

为模型提供起始图像和文本的方法,就让视频生成变得更容易了,因为模型需要做的,只是预测图像未来将如何演变。

这种「分解」的视频生成方法,可以有效地训练模型,并且可以通过单个扩散模型来实现。

基于Emu模型,Meta团队提出了一种基于扩散模型的T2V生成的简单方法——Emu Video。

这是一种用于视频生成任务的统一架构,可对各种输入做出响应:文本、图像,以及文本和图像。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

由于视频文本数据集比图像文本数据集小得多,因此研究者还使用了权重保持冻结的预训练文本到图像(T2I)模型来初始化分解文本到视频模型。

其中最关键的设计决策,就是调整视频扩散的噪声时间表,以及让我们直接生成更高分辨率视频的多阶段训练。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

分解文本到视频的生成,首先要生成以文本p为条件的图像I,然后使用更强的条件(生成的图像和文本)来生成视频V。为了在图像上条件化模型F,研究者对图像进行了临时的零填充,并将其与二进制掩码连接起来,指示哪些帧是零填充,哪些是噪声输入

与直接的T2V方法不同,在推理时,Meta的分解法能够显式生成图像,这就能够轻松地保留文本到图像模型的视觉多样性、风格和质量。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

Emu Video可以生成高质量且时间一致的视频,同时使用文本提示作为输入 (顶部两行)或用户提供的附加图像(底部行)

这使得Emu Video的性能优于直接的T2V方法,即使在考虑相同数量的训练数据、计算和可训练参数时,也是如此。

大多数先前的工作,都是通过利用T2I模型来解决T2V生成问题。比如,有几项工作是采用免训练方法,通过在T2I模型中注入运动信息,来生成零样本的T2V。

虽然这些方法不需要或需要有限的训练,但生成的视频的质量和多样性,都是有限的。

与之前需要深度串联多个模型的工作不同(比如用于Make-A-Video的5个模型),新方法仅使用2个扩散模型,能够以每秒16帧的速度,生成512×512的4秒长视频。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

实验


研究者在3400万个许可视频文本对的数据集上,训练了Emu Video

视频时长从5秒到60秒不等,涵盖了各种自然世界概念。

这些视频不是针对任何特定任务而策划的,也没有针对任何文本框架相似性或美观性进行过滤。

研究者使用了之前工作中的文本提示集来生成视频。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

这些提示涵盖了各种各样的类别,可以测试模型生成自然和梦幻视频以及组成不同视觉概念的能力。

然后,研究者会使用JUICE评估方案进行可靠的人工评估,并使用5名评估者的多数票,每次都进行比较。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

该表反映了Emu Video中的关键设计决策。每个表都显示了采用设计决策与不采用设计决策的模型在质量(Q) 和忠实度(F)方面的偏好

Emu Video中的设计选择如下。

第一行是直接从文本到视频生成的视频,结果的视觉质量低,且不一致。

第二行是使用分解的文本到视频方法,这种方法生成的视频质量高,一致性也得到了提高。

第三行是在512px生成时,不使用零终端SNR噪声计划,这会导致各代图像之间出现明显的不一致。

第四行是使用HQ数据微调第二行的模型,来增加生成视频中的运动。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

另外,通过小的架构修改,研究者还在T帧上调节了模型,并且进行了扩展。

他们训练了Emu Video的变体,生成了以「过去」的16帧为条件的未来16帧。

对于两个不同的未来提示,模型会生成合理的扩展模型,既尊重原始视频,也尊重未来文本。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

效果拔群


在人工评估中,与以前的工作相比,Emu Video的视频生成更受欢迎——有趣的是,不同的受访者偏重不同,其中96%的人更看重视频质量,85%的人更看重视频对文本提示的忠实度。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

与Imagen Video和Align Your Latents相比,Emu Video在风格和一致性方面,质量都更高

由于不再需要像之前的工作那样深度串联多个模型,Emu Video产出的视频质量和分辨率都极高,在人工评估中已经接近许多成功的生成式AI视频工具。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

比起谷歌的Imagen,比分是81:100;比起英伟达的PYOCO,比分是91:100;比起的Meta的Make-A-Video,比分是96:100。

比起Runway的Gen-2和Pika Labs,Emu Video的表现仍然很强劲。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

在质量方面,Emu 胜过了VideoMake-A-Video或Imagen Video。原因主要是人们更喜欢它的像素清晰度和运动平滑度

最后,同一模型可以根据文本提示,对用户提供的图像进行「动画化」,再次刷新SOTA。

一些演示


媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

two sloths are playing chess in slow motion, 4k, high resolution

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

A supernova explosion in space

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

A clear wine glass with turquoise-colored waves inside it

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

A robot dj is playing the turntable, in heavy raining futuristic tokyo rooftop cyberpunk night, sci-fi, fantasy, intricate, elegant, neon light, highly detailed, concept art, soft light, smooth, sharp focus, illustration

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

A phoenix flying over an active volcano in Iceland, photorealistic

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

一个场景转换多种动作、多种场景

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

柯基转换成浣熊、熊猫的多种形象

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

不同风格的熊猫

Emu Edit:高精度图像编辑


基于指令进行图像编辑的模型,已经屡见不鲜。

然而,当前像InstructPix2Pix在内等模型能够处理任何给定的指令,但仍无法准确地去解释和执行这些指令。

可见,它们的泛化能力是有限的,有时无法完成与训练时有偏差的任务。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

对此,Meta研究人员提出了Emu Edit——首个在广泛、多样的任务集上经过训练的图像编辑模型,包括图像编辑和计算机视觉任务。

Emu Edit强大之处在于,它能够通过指令进行自由格式编辑。

比如,擦除绿草坪中的小狗,再添加一个放置在红色长椅上的笔记本,然后还可以将草坪背景变成沙漠。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

Emu Edit还可以将抱枕的情绪从微笑,替换成困惑,甚至还可以「检测面部」。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

香蕉拿着的吉他,立马变成了冲浪板,然后就来到幻想世界,戴上了蓝手套。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

小老鼠戴上了小丑帽,然后变成了一只面无表情的熊猫,接着又变成一只兴奋大笑的熊猫。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

总而言之,Emu Edit能够做到对图像局部和全局的编辑、删除和添加背景、颜色和几何变换、检测和分割等任务。

实现了一键可以处理各种图像任务,并且还能高精度生成。

当前的研究方法,通常倾向于过度修改,或在各种编辑任务上表现不佳。Meta认为,图像编辑的主要目标不应该只是制作一个「可信」的形象。

相反,模型应专注于仅精确更改与编辑请求相关的像素。

与当今许多生成式AI模型不同,Emu Edit精确地遵循指令,确保输入图像中与指令无关的像素保持不变。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

Emu Edit是多任务模型,它结合了各种编辑和视觉任务来进行精确的图像编辑

例如,在棒球帽上添加文字「Aloha!」时,棒球帽本身应保持不变。

研究人员认为,将CV任务作为图像生成模型的指令,可为图像生成和编辑提供前所未有的控制。

为了训练模型,Meta团队开发了一个包含1000万个合成样本的数据集,每个样本都包括输入图像、文本指令、目标图像、任务索引。

如下,是所有数据样本的分布,由任务组成主要分为三大类:基于区域的编辑、自由格式的编辑、视觉任务,细分为16个任务。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

由于Emu Edit是针对各种任务进行训练的,其中最重要一点是,能够根据用户指令识别需要应用的语义编辑,如全局/局部/纹理。

但是,如果指令非常特殊(图4中的「修复缓冲器」),或者编辑类型含糊不清(图4中「将天空改为灰色」既可解释为全局编辑,也可解释为纹理编辑),模型在确定预期的编辑类型时可能会遇到困难。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

为了给模型提供一个强有力的条件,来引导生成过程走向正确的任务,Meta提出为每个任务学习一个独特的嵌入任务,并将其集成到模型中。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

在训练过程中,任务嵌入与模型权重一起学习。

后期训练,Emu Edit能够通过少样本学习新的任务嵌入来适应新的任务,使模型的其余部分处于冻结状态。

最后,研究人员还发现,在多轮编辑场景中,重复应用模型,聚合重建和数值误差,从而产生明显的人工痕迹。

为了缓解这一问题,研究人员在每一轮编辑后,增加了一个按像素阈值处理的步骤,进而保持生成图像的质量。

实验


1. Emu Edit基准

研究人员比较了MagicBrush测试集和Emu Edit基准测试的结果。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

与在Emu Edit测试集和MagicBrush测试集上评估的图像编辑基线的比较

为了收集具有较低偏差和较高多样性的数据集,研究人员采用了不同的方法。

他们首先定义了7种不同类型的潜在图像编辑操作:背景修改(背景)、全局图像修改(全局)、样式修改(样式)、对象移除(移除)、对象添加(添加)、局部修改(局部)和颜色/纹理修改(纹理)。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

然后,利用来自MagicBrush基准的各种输入图像集,对于每个编辑操作,让工作者设计相关的、创造性的和具有挑战性的说明。此外,为了提高所收集样本的质量,Meta还采用了验证后阶段。

2. 基线比较

研究人员将Emu Edit模型与两个基于指令的图像编辑基线模型进行比较:InstructPix2Pix和Mag-icBrush。

结果表明,与所有基线相比,人类评估者一致地喜欢Emu Edit。

此外,除了空文本反转(Null-Text Inversion)在推理过程中使用了ground-truth字幕外,Emu Edit方法明显优于现有基线,

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

3. 消融研究

– 计算机视觉任务增强图像编辑任务

这部分,Meta团队演示了视觉任务对图像编辑任务中Emu Edit性能的重要性。

为此,研究人员训练了两个额外的模型的所有任务,除了「检测和分割」任务,和「图像到图像翻译」任务。

如下表4,增加的「检测和分割任务」提高了基于局部编辑任务中的模型性能。

此外,他们还观察到图像到图像的翻译任务,提高了自由形式编辑任务的性能。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

– 学习任务嵌入的贡献

研究人员比较了Emu Edit的三种变体:(i) 以ground-truth任务嵌入为条件;(ii) 以任务嵌入为条件 (iii) 不以任务类型为条件。

表3显示了基准验证集的结果。可以看出,对任务类型进行调节,可以提高模型的性能。此外,任务预测器缩小了与ground-truth条件模型的差距。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

在图9中,展示了在指令和输入图像保持不变的情况下,对任务进行调整的效果。可以看出,改变任务嵌入会直接影响模型执行的任务。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

4. 少样本学习新任务

研究中,Meta还通过任务反转来探索,Emu Edit对未知任务泛化。

在此过程中,保持模型权重不变,仅更新任务嵌入以适应新任务。

实验证明,Emu Edit可以迅速适应新任务,如超分辨率、轮廓检测等。当标注样本有限或计算资源有限时,Emu Edit的任务逆向适应有着巨大的优势。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

虽然Meta目前的工作还仅仅是基础研究,但其潜在的应用场景可以预见。

想象一下,聊天时即时生成动画贴纸、GIF,不用再去搜索表情包,又或者编辑自己的照片或图像,不需要任何技能,就能搞定。

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂

发个生活动态,可以将你的静态图动态化,能吸引不少人前看。

不过,Emu Video和Emu Edit虽不能替代专业艺术家和动画师,但它们可以帮助人们以一种全新的方式表达自己。

参考资料:https://ai.meta.com/blog/emu-text-to-video-generation-image-editing-research/https://emu-video.metademolab.com/https://emu-edit.metademolab.com/

媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂


媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂
媲美Gen-2,Meta多模态创AI生图新里程碑!破文生视频历史难题,静图秒变视频逼真到炸裂


 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 11 月
 12345
6789101112
13141516171819
20212223242526
27282930  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行 一水 2025-12-22 17:04:24 来源:量子位 本届...
MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law 一水 2025-12...
天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话 Jay 2025-12-22 13:46:04 来源:量子位 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026 量子位的朋友...