近两年,深度学习模型少有突破性进展,尽管学术界一直在炒大规模预训练模型,但是能玩得起的机构少之又少,更别提具体应用落地了。但是,深度学习终究还是要服务于企业,只有能为企业带来实在的收益(靠着玩概念,忽悠来的投资,不算做收益),深度学习才能长青。
各大企业都在努力验证深度学习的商业落地场景,而高学历的算法工程师在驻场解决甲方企业的实际问题时,却出现以下这种无语局面:
为了避免以上这种情况重复发生,现在的企业在招聘AI算法工程师时,开始要求应聘者需要掌握当下深度学习加速必备的CUDA编程,并且需要熟练掌握当下主流的加速工具TensorRT模型的使用技巧。
然而学习CUDA编程并不容易,尽管NVIDIA推出了CUDA相关文档,但是这些文档对新入门的小伙伴并不友好,很多人反映自己想学习CUDA,但是苦于学习起来效率太低,只好遗憾放弃。
基于此,深蓝学院与腾讯高级研究员一起研发了《深度神经网络加速:cuDNN 与 TensorRT》课程,细致讲解CUDA运算的理论支撑与实践,以及cuDNN、TensorRT这两个当下最热门的深度神经网络加速的工具。
扫码报名,了解详情
请务必备注【125】,优先通过哦
以下附上部分课程预览:
(编译TRT git源码sampleMNIST)
01师资力量杨伟光,腾讯高级研究员,大连理工大学硕士
毕业后一直在腾讯从事语音领域深度学习加速上线工作。近10年CUDA开发经验,近5年TensorRT开发经验;
Github TensorRT_Tutorial作者。
康博,高级研究员主要方向为自然语言处理、智能语音及其在端侧的部署。博士毕业于清华大学,在各类国际AI会议和刊物中发表论文10篇以上,多次获得NIST主办的国际比赛top 2成绩。近年来主要研究方向为AI在场景中的落地应用。
02课程大纲
03课程优势
1. 内容精简:主讲CUDA核心的并行运算操作
2. 知识前沿:本期课程涵盖当下主流的深度学习模型加速工具
3. 氛围活跃:与数百位同学共同交流学习
04适合人群1. 人工智能领域的算法或者开发工程师,尤其是工作涉及深度学习的模型。
2. 希望学习并行计算系统的科研工作者以及工程师。
05学习收获1. 掌握CUDA并行系统的分析、开发、调试与优化方法。
2. 熟悉CUDA的基本概念以及主流的并行运算。3. 了解cuDNN与TensorRT两个深度学习模型的加速工具
4. 具备动手实践深度学习模型加速的能力
06 学习圈子及服务你的同学大多是来自985、211及海外院校硕博,在这里大家一起学习、进行讨论与研究。独一无二的优质圈子将是你未来学习与就业的宝贵资源。并且会有讲师&助教及时答疑解惑,班主任全程带班督学,帮你克服拖延,不断进步。助教1V1批改作业,并在班会中进行讲评和指导;在班会中,学习更多技巧;在交流中收获更多思路。
扫码报名,了解详情
请务必备注【125】,优先通过哦