吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

1,255次阅读
没有评论

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

  新智元报道  

编辑:alan

【新智元导读】大语言模型在实际部署中,存在内存和输入长度限制的问题。最近,田渊栋团队一举解决这两大难题,将推理系统的吞吐量提高了近30倍。


大型语言模型 (LLM) 在今年可谓是风光无限。不过惊艳的效果背后是一个巨大的模型以及夸张的硬件资源。

LLM在现实中部署时通常会面临两个难题:昂贵的KV缓存成本,以及对长序列的泛化能力差。

近日,田渊栋团队发表了一篇论文,成功解决以上两个难题,并将推理系统的吞吐量提高了近30倍!

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题论文地址:https://arxiv.org/pdf/2306.14048.pdf代码地址:https://github.com/FMInference/H2O

这个成果也将在NeurIPS’23上展示。

下面,我们来看一下这两个难题的具体情况,以及论文提供的解决方案。

首先是缓存,KV缓存用于存储生成过程中的中间注意力键和值,以避免重新计算。

通常,除了模型参数外,还会将大量瞬态信息(KV缓存)存储在GPU内存中,这部分的内存占用,与序列长度和批处理大小线性相关。

例如,一个输入批次大小为128、序列长度为1024的300亿参数模型需要180GB的KV缓存。

其次,由于硬件限制,LLM会以固定的序列长度进行预训练(例如Llama-2使用固定长度4K的序列)。

然而,这其实也对推理过程中的注意力窗口施加了限制,使得模型在面对更长输入序列时无法发挥作用,阻碍了更广泛的应用。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

对此,论文提出了一种实现KV缓存的新方法,显著减少了内存占用,且在长输入序列的任务中表现良好。

方法基于这样一个事实:在计算注意力分数时,一小部分tokens贡献了大部分的价值,——这里称这些tokens为Heavy Hitters (H2)。

通过综合调查,作者发现H2的出现是自然的,且与文本中词组的频繁共现密切相关,而去除它们会导致显著的性能下降。

基于此,作者提出了Heavy Hitter Oracle( H2O ),一种KV缓存逐出策略,可动态保持最近的tokens和H2 tokens的平衡。

另外,作者将KV缓存驱逐表述为一个动态的子模块问题,为提出的驱逐算法提供了理论保证。

最后,作者使用OPT、LLaMA和GPT-NeoX在各种任务中验证算法的准确性。

其中,在OPT-6.7B和OPT-30B上实现的H2O,将DeepSpeed Zero-Inference、Hugging Face Accelerate和FlexGen这三个推理系统的吞吐量分别提高了29倍、29倍 和3倍,且在相同的批量大小下,H2O最多可以减少1.9倍 的延迟。

论文细节

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

上图为在 LLM 生成中部署不同 KV 缓存策略的符号图;左下为H2O的框架概述;右下为不同策略下的准确性与内存消耗的对比。

我们可以看出,将前几种方法应用于预训练的LLM ,会导致高未命中率并降低精度。

解决KV缓存问题,面临着三个技术挑战。

首先,目前尚不清楚是否可以限制KV缓存的大小——原则上,每个解码步骤可能需要访问所有先前的注意力键和值。

其次,确定保持生成准确性的最佳逐出策略是一个组合问题。

最后,即使可以暴力破解最佳策略,在实际应用程序上部署也是不可行的。

幸运的是,作者通过研究发现了一些有趣的结果。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

小缓存大小的稀疏性:即使在密集训练时,LLM的注意力矩阵在推理时也有超过95% 的稀疏率(图a)。这适用于各种预训练的LLM。

因此,在每个生成步骤中,只需要5% 的KV缓存就足以解码相同的输出tokens,这表明KV缓存大小最多可以减少20倍,而不会降低精度。

Heavy Hitters( H2 ):注意力区块中所有tokens的累积注意力分数都遵循幂律分布(图b)。这表明存在一小群有影响力的tokens,这些tokens在生成过程中至关重要,是重量级tokens ( H2 )。这使我们可以摆脱组合搜索问题,并确定保持准确性的逐出策略。

低成本策略的贪婪算法:在每个解码步骤中保留基于局部统计数据的H2(仅将前面tokens的注意力分数相加)与考虑未来tokens的注意力一样有效(图d)。

基于上述内容,作者定义了在大小受限的KV缓存中, LLM的生成过程,并提出了Heavy-Hitter Oracle ( H2O ),该框架利用了上面提到的性质,并使用简单、低成本的驱逐策略。

方法与分析

LLM的生成过程包括两个不同的阶段:

提示阶段:使用输入序列来生成KV缓存(由键和值嵌入组成),类似于LLM训练期间采用的前向传递;

tokens生成阶段:利用和更新KV缓存以增量方式生成新tokens 。每个生成步骤都依赖于先前生成的tokens。

本文的重点是在tokens生成阶段提高KV缓存的注意力效率,从而加速LLM推理。

作者定义了具有有限KV缓存大小的生成过程,包括注意力查询矩阵Q和键矩阵K。

驱逐策略:

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

以及采用了驱逐策略的生成过程:

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

接下来讨论在不降低精度的情况下,减少KV缓存大小的可能性。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

上图中,(a)表示预训练OPT模型中的注意力稀疏性;(b)表示累积注意力分数相对于相应单词的分布(红色散点)和数据中单词的共现次数(灰色曲线),x轴表示词汇表中的单词索引;(c)表示具有完整KV缓存的基线模型与本文模型(H2O)的性能比较;(d)表示具有完整KV缓存的基线模型、具有局部统计量的H2O、具有全局统计量的H2O和仅具有最新KV(局部)的模型之间的比较。

给定由查询矩阵Q和键矩阵K计算的归一化注意力得分Softmax矩阵,将阈值设置为每行最大值的百分之一,并计算相应的稀疏度。

然后在Wiki-Text-103的验证集上使用预训练的OPT模型进行零样本推理,绘制注意力块内的逐层稀疏性,并可视化了归一化的注意力得分矩阵。

结果如下图所示,尽管LLM是密集训练的,但由此产生的注意力得分矩阵是高度稀疏的,几乎所有层的稀疏度都超过95%。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

注意力块的稀疏性表明,生成下一个tokens时,不需要访问所有先前的键和值嵌入,所以可以逐出不必要的KV嵌入,也就减少了生成过程中对KV缓存的需求。

不过,逐出的策略需要谨慎,因为一旦驱逐了重要的KV,由于LLM生成的顺序依赖性,可能会破坏LLM的性能。

作者研究发现,注意力区块内所有tokens的累积注意力分数都遵循幂律分布,如下图所示。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

这表明存在一小部分在生成过程中至关重要的tokens,也就是前文谈到的Heavy-Hitters (H2)。

此外,每个单词的累积注意力分数(红点)与它们在数据中的共现(灰色曲线)具有高度相关性。

作者基于以上现象设计了一种贪婪驱逐策略:

在生成过程中,当令tokens数量超过分配的KV缓存预算时,根据其累积的注意力分数统计数据,以及缓存中的本地tokens来保留重量级tokens。

一般而言,需要使用整个生成过程中的统计数据,才能得到最理想的结果,但这在实际部署中显然是不可行的,因为无法访问未来生成的tokens。

于是,作者进行了下图的实验,发现在每个解码步骤中使用局部统计数据计算的局部H2 ,与考虑未来tokens的情况效果差不多(红线和蓝线)。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

随后,作者将这种动态注意力分数计算(有空间限制)定义为一种新的动态的子模块问题(dynamic submodular type problem):

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

利用上面的形式定义KV缓存驱逐策略:

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

上图展示了驱逐算法,以及说明性示例。这里假设KV缓存的预算大小为3 ,完成第四个解码步骤后,根据累积的注意力分数逐出与第三个token关联的KV嵌入,被逐出的KV嵌入在后续解码步骤中将不可访问。

另外,作者还提到了实际实现中的细节。比如,为了保证I/O效率,我们在驱逐存储的KV时不会交换内存,而是直接填充新添加的KV。

实验结果

论文的实验选用了三个具有代表性的LLM模型系列,包括OPT,LLaMA和GPT-NeoX-20B 。

选取了8个评估任务:COPA , MathQA , OpenBookQA , PiQA , RTE , Winogrande , XSUM , CNN/Daily Mail 。

实验的硬件采用NVIDIA A100 80GB GPU。

考虑到H2O所采用的缓存策略,这里除了完整的KV缓存(Full),还将本地缓存策略(Local)也作为基线方法。

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题

由上面的图和表可知:在不同的KV缓存预算下,本文提出的方法(H2O)在各种不同条件的测试中都优于Local策略。

同时,在低于20%的KV缓存预算之下,H2O实现了与全KV嵌入模型(Full)相当的性能,且在更具挑战性的长序列生成任务、XSUM和CNN/Daily Mail中表现良好。

参考资料:https://arxiv.org/abs/2306.14048https://twitter.com/tydsh/status/1731778956330971507

吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题


吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题
吞吐量提升近30倍!田渊栋团队最新论文解决大模型部署难题


 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 12 月
 123
45678910
11121314151617
18192021222324
25262728293031
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25 鹭羽 2025-12-13 22:37...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...
5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级 思邈 2025-12-10 14:28:37 来源:量子位 让更大规...
商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1 十三 2025-12-15 14:13:14 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了

读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了

读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了 衡宇 2025-12-10 12:3...
5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级 思邈 2025-12-10 14:28:37 来源:量子位 让更大规...
戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案

戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案

戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案 十三 2025-12-10 1...
九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局

九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局

九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局 量子位的朋友们 2025-12-10 18:...
乐奇Rokid这一年,一路狂飙不回头

乐奇Rokid这一年,一路狂飙不回头

乐奇Rokid这一年,一路狂飙不回头 梦瑶 2025-12-10 20:41:15 来源:量子位 梦瑶 发自 ...