创业者应该如何拥抱AGI:尽早下场、CEO亲自抓、让3.5%的人先参与

1,054次阅读
没有评论

创业者应该如何拥抱AGI:尽早下场、CEO亲自抓、让3.5%的人先参与2022 年 11 月,OpenAI 上线 ChatGPT,到今天已经满一年了,从最初的震惊、兴奋、跟随,到如今,对于所有人来说,都已经是拥抱 AGI 和迎接 AGI 的状态了。

而对于企业和创业者来说,AGI 时代的来临不仅仅意味着新的机会,也意味着随时可能被取代的风险。

如何理解 AGI,AGI 时代到底给企业带来了哪些机会和风险?

以及,对于创业者来说,到底应该怎么拥抱 AGI,如何下场开始 AI 时代的新的创业?

针对这些问题,Founder Park 联合首钢基金旗下产业社群平台「参加CANPLUS,邀请了国内大模型相关公司的创始人、专家,与来自农业、教育、零售、金融、企服、医疗等行业的从业者,进行了一场关于 AGI 认知的讨论与「对齐」。

以下内容节选自参会讨论嘉宾的精彩观点,由 Founder Park 进行整理。

交流嘉宾介绍:黄铁军:智源人工智能研究院院长、北京大学计算机学院教授张帆:智谱 AI COO胡时伟:第四范式联合创始人白鸦:有赞创始人&CEO傅盛:猎豹移动董事长& CEO、猎户星空董事长

程操红:钉钉 CTO

创业者应该如何拥抱AGI:尽早下场、CEO亲自抓、让3.5%的人先参与

01

AI 现阶段是技术,不是科学

AI 首先是一门技术而不是科学

黄铁军:人工智能到底是一门科学还是一门技术?这个认识会影响我们对于很多问题的根本性判断。很多人质疑人工智能,或者对于人工智能的未来判断不准,主要是因为把人工智能的属性搞错了。人工智能是一门技术,不是一门科学。

为什么是技术?创造发明新的事物叫做技术。人工智能的目的是创造智能系统,创造最前沿、未知的、未曾出现的事物。科学是探索和发现事物或现象背后的的规律。很多人习惯性思维认为科学是技术的基础,做研究首先要把科学搞清楚,然后再去开发技术。这是思维偏见,有些时候是这样,很多时候不是这样。

自然科学、生物科学等,因为研究对象本来就存在,可以研究背后的规律。人工智能创造的最新系统还不存在,如何研究背后的科学?智能原理没搞清楚,不意味着就不能做人工智能。中国古代四大发明,指南针发明时,还没有电磁学等科学原理。人类一直处于不断探索和摸索的过程,探索包括发明新的事物(也就是技术)以及好奇心——研究背后的规律(也就是科学),两者都是原始创新,不是简单的技术以科学为前提。

人工智能系统发展这么快,还没搞清楚背后的科学原理,一点都不奇怪。能搞清楚科学原理、解释清楚的东西都不复杂,解释不清楚,只是人类还没明白背后的原理而已,更重要的是能否做出来。

把人工智能视为一门技术的关键是,我们要做的是去发明更强的智能算法或者系统,之后才是研究背后的规律,不能本末倒置。从根本上讲,最终人类能否揭示智能背后的原理,现在也是没结论的。真正的智能可能是不可理解的,至少不能用已有逻辑去解释。

结论就是,AI 首先是一门技术,它的特征是不断形成新的智能模式,开发出越来越强的智能系统。AI 将为科学创造越来越复杂的研究对象,不断开拓科学的疆域。AI 是科学的先导,而不是科学的应用。


ChatGPT 其实是 GPT 模型对人类的降维

黄铁军:GPT 模型本身是很强的,但是到底有多强?可能 OpenAI 的人自己也不知道。在 ChatGPT 上线之前,他们也没有预测到效果会这么好。ChatGPT 的「chat」,其实是用人类能交流和感知的形式,把其中部分能力提取出来,跟人类偏好对齐。

当人类觉得满意的时候,其实感知的只是人类能感知的这部分能力。GPT 还有很多强大的能力没有展示出来,很多能力可能是人类没法通过交流体验到的。

幻觉其实是大模型本身的创造力

张帆:大家对于幻觉其实是过于担心了。我觉得幻觉的本质是创造力,就是它能够创造以前没出现过的东西。

大模型出现以前,我们所有的模型包括检索,基本上就是把已经见过的东西抽取出来,不会凭空产生,这会让我们觉得是可控的。但是大模型今天会创造出一些原来没有的东西,会基于用户的数据做推理,延展出一些没见过的东西,这个我们称之为幻觉,也是我认为今天大模型最大价值的地方。

人的创造力某种程度上也是幻觉,为什么我们不觉得是坏事?因为人对于幻觉的生产是有标准的,也就是所谓的对齐。所以最大的问题不是没有幻觉,而是如何控制幻觉,按照我们想要的方式,让幻觉为我们所用,让创造力为我们所用。

解决幻觉有两种方式:第一个方式是模型本身的优化,不断和人类对齐,这也是现在大家一直在努力的方向,但可能不能马上就解决问题,所以需要一些工程化的手段。第二个方式,就是工程化的方式,在对大模型的回答有具体需求的时候,我们可以给一些检索结果或者指令,告诉大模型,回答结果只能来自检索的信息,如果没有就不回答。


大模型可能会成为全民基础设施

黄铁军:我们认为继续发展下去的话,全球的大模型生态屈指可数,不会超过 5 个。

为什么会这样?

模型是数字形式的智能服务,只有最强的会活下来,能力差的自然会被淘汰。全球各地因为经济政治等问题,不可能只有一个,一般会有 2、3 个。

其次,能做这件事的机构也是有限的。提供高智能的服务,必然需要尽可能全量的数据、可靠的系统等,而且需要不断更新的状态,7×24 小时运转,吸收了所有的数据,掌握了所有可能性的「智网」,其实已经变成了全社会的基础设施。

从科技创新的角度来说,也不应该是彼此封闭的公司各自研发的状态,可能会是一个智能时代,成为一门学科,很多代人集体研究、发展的状态。

如果跳出商业维度来看待这件事,比如像国家电网就不是纯商业的,它有一定的商业属性,但更多是公共属性。大模型最后可能会变成一个全民公共服务,就跟电网、互联网一样成为基础设施。

而未来,现在 all in 大模型的公司其中一部分会在大模型生态中存活下来,甚至可能会成为很大很强的公司,但现阶段,看不出哪个公司有可能成为大模型的主体运营商。将来大模型成为类似电网的存在,这些大模型公司也会找到对自己来说更有利的位置,它们可能成不了国家电网,但国家电网也不是一家公司,上下游是有很多公司组成了一个庞大的体系。


大模型不会带来大量的失业

胡时伟不只是大模型,机器学习和AI出现的时候,企业就会担心会带来大量的失业。比如说大一点的国企会说我们有20万员工,不能因为AI的出现就让他们失业了。

思路是这样的,如果我们真的要替代人工岗位,需要让20万员工认认真真做三年(数据)标注,做完标注后,是有可能替代掉一半或者 1/3的员工。这种事情是可能存在的,但前提是你要构建一个完善的系统,让员工做数据标注,在标注的过程中,把很多存在员工大脑里的业务流程和经验转移到模型里。

所以企业真正去做这件事情,需要构建一个数据飞轮,这个数据飞轮要把人、企业、企业的系统、以及人机交互的反馈闭环等都考虑到。把真正的业务系统在这个范围内做闭环。这也是Agent的核心价值所在——人机充分协同下的Agent能够让机器从被动参与协作,进入主动参与协作这一重要阶段。AI成为每个人工作的助理,逐步从细分工作的辅助,变成整体决策的辅助,再到真正成为专家。

很多企业上一波做ERP、信息化的时候,什么一把手工程,又是收数据又是做梳理,但效果甚微,现在数字化(智能化)的过程中要想得到真正的收益,就需要真正把这些问题串联起来考虑。


02

拥抱大模型很重要,让 3.5% 的人先参与

大模型为企业带来了哪些机会?

张帆:大模型本质上是改变了人机交互,这是一种人机交互的革新。人类的需求其实就没怎么被改变过,CRM、ERP 的需求我们一直有,各种各样企业服务的需求也都是存在的。但是对着不同的人机交互的方式,我们可以提供不一样的产品和体验,不一样的成本和协作方式,甚至不一样的组织结构,每一次交互方式的改变都会推动这些能力的产品化重构。

人机交互从从最早的穿孔机、键盘、鼠标变成现在触控,大模型时代又变成了自然语言的交互,每次交互的变化都带来了更低的交互门槛,交互效率变得更高。

在以前,我们都会遇到一个问题:表达力和使用门槛是负相关的。Photoshop 功能特别强大,表达力特别强,但是使用门槛很高;美图秀秀门槛特别低,但表达力也会受限。以前是没法两全的,但大模型让这件事有了两全的可能性。因为自然语言的表达门槛是极低的,每个人都会说话,很复杂的逻辑也能用自然语言表达出来。在这样的体系下会不会产生 AI-Native 的应用,会不会产生完全不一样的应用来取代?我觉得是有可能的。

但我不认为一两年就能马上有 AI-Native 的诞生,但这个事情也不是等出来的,比如抖音和今日头条不是突然掉下来的,而是字节一直在优化和调整,到了移动设备、网络等各种条件 ready 的时候,才会成为今天的抖音。

拥抱是很重要的事情,既不要短期期待过高,也不要长期低估潜力


AGI 时代,需不需要整个公司都 All in?

白鸦我们的观点可能比较极端,不需要。

第一,我去年 10 月份去美国跟 AI 相关的公司聊,在美国待了四个月,然后今年从 4 月份-8 月份是我们的研究阶段,也就是花学费学习阶段。为什么有四个月的学费阶段,因为我决定在我们没有把成熟的产品做到用户面前之前,公司绝对不招任何一个 AI 科学家。原因特别简单,只要让他进来了,我面临的问题就是:老板你不懂,我觉得事情应该这么干等等,就算他是对的到最后我依然不知道我们该怎么做。我觉得没必要,因为我们自己不做大模型,只是做应用,我们只要知道大模型能实现什么,去做应用就好了。当然,明年我们成熟的产品阶段,用户开始用起来的时候,可能有很多问题要面对,这时候还是很需要高级 AI 研究员的。

第二,面对 AI,有无数的人会装睡,因为很多人知道 AI 会让他们失去工作,还有人会懒得去学,有人会抵触 AI,这也是很多人会说 AI 是智障、有很多问题没法用的原因之一。

所以我就不打算让全公司 all in,选了一个小组进来,这个小组的人会隔一段时间就在公司做个分享,让感兴趣的人来听,然后给这些先用 AI 的人涨工资,逐渐淘汰不用的、落后的那些人。

这种做法其实是有理论支撑的,哈佛大学政治学家切诺韦思有个 3.5% 的理论,一场运动只要有 3.5% 的民众真心参与,就能带来重大的变革。那,对于 AI 来说,什么是「真心」相信?

  • 相信 AI 产品很快就可以更好地完成所有人类重复性的工作,尤其是那些「专业」的重复性工作,我们工作的价值就是创造这些 AI 产品帮助人类完成那些工作。

  • 相信经过数据积累和学习之后,AI 所生成的内容,要强于绝大多数人类生成的内容,包括绝大多数过往经验里的最佳时间内容。能用 AI 生成生成内容时,优先选择 AI 生成,而不是人类。

当下,拥抱大模型是个性价比高的事情

张帆:一部分人经常会说大模型这个事做不了,那个事做不了,但这么看待大模型对这个事情没有任何帮助。iPhone 刚出来的时候,电量不如诺基亚、输入不如黑莓,但是你认不认为它是未来?如果认为它是未来,就要及早切入。

及早切入最大的挑战,不是你怎么去否定它,而是如何找到最大公约数,在今天就能用而且有效地用起来,建立正循环,对模型有感觉,及早开始沉淀企业自己的核心资产。而且要给模型成长的时间,可能每三个月就会有一个大的变化,就能多干几件事。

及早下场,从最小公约数做起,及早构建正循环团队,我觉得特别重要。

某种程度上,我觉得今天拥抱大模型是个非常划算的事情,因为它是一个损失有限、收益无限的事情。一旦有收益,可能就会是一个全新的机会,会给你的竞争带来很多先发优势。

站在岸边永远学不会游泳,要先动起来,速度在今天尤为重要。


全员拥抱 AI 必须一把手亲自抓

傅盛:什么叫全员 AI,让整个公司去理解 AI,真正把自己的流程往 AI 上靠,而且我觉得这是战略工程。执行 AI 实践的最大阻力,是跨部门的协作壁垒,是部门管理者的旧思维,一把手必须要亲自抓。

在这个战略工程中,一把手要懂基本原理,要做组织变革。一把手必须要去了解最重要的基础原理,就跟马斯克造火箭的时候要懂火箭的基本原理,不然都没法跟工程师对话。一定不要想着招个人,他就能把这件事做了。


拥抱大模型,并不等于企业真正的智能化

胡时伟:在做技术变革或引入数字化技术之前,企业要先明确自己是否拥有足够充分的动力——是否能真正解决产业的核心问题,是否能让足够多的人兴奋?从战略角度看,数字化必须要做,但企业原本的构建过程已经固化,如何去打破原有的格局和平衡,对很多企业而言是个巨大的挑战。

过往经验来看,试点式的人工智能场景大多会因为脱离业务而失败,all-in 式的数字化变革大多会因为能力不到位而失败。归根结底,数字化转型需要足够的动力,而动力是需要去发现的。所以我们需要去研究数字化转型的本质和科技的本质,其中除了战略、策略,还需要用到一定的商业模式设计能力。

对于很多企业而言,数字化(智能化)与否最容易被忽略的是文化问题,数字化的本质是找数据要决策,以数据为本,而不是找人要结果。以人为本和数据为本是有本质区别的。


03

及早下场,寻找当下能落地的最好场景

大模型不会吞噬一切

傅盛:为什么不会吞噬一切,我觉得有三个原因:

第一,大模型没有私有数据,私有数据是企业核心竞争力。每个企业每次推出一款新的产品,这背后经历了大量的流程和策略讨论等,这些都是企业不可多得的私有数据。企业内部的流程和数据是非常核心的,如果能用大模型把这些利用好,效率会提升很多。

第二是能力边界,大模型的幻觉推理问题,目前还是需要其他的办法来解决。最后会发现这其实就是最后一公里的事情,就像基站建好了,但是村里还是不通电,需要变电站等。

第三是大模型的成本问题,参数越大,模型成本越高。我们的不少应用,都不敢用 GPT-4,因为太贵了。


什么样的应用不会被大模型取代?

白鸦:我觉得要有几个特征才不会被大模型取代。

第一个是要有自己独特的私有数据。大模型覆盖的领域在变得越来越宽,具备的通用知识和领域知识也会越来越多,如果你本身没有行业的业务数据,很快就会被大模型取代。这个数据一定要是在业务里产生的活数据,需要有业务作用,而不是独立的废弃的业务。

第二个是要在应用里灌入业务流和作业流程。未来很多领域的应用会是 all in one 的,就比如大家经常用的飞书和钉钉,文档、聊天、报销、审批等流程,如果不是 all in one 的,流程和权限上就会存在很多问题。不 all in one,不把业务流程灌进去,这件事是跑不通的。

第三,做一堆功能还是解决问题,我们选择先解决问题,先解决当下能解决的问题,至于功能可以根据要解决的问题慢慢添加。

第四,看的更远还是选择更快落地。我们选择更快落地,等我们搞明白了原理,开始解决一个个的常规问题,当下有人开始用起来,至于最长远的问题,我觉得不是我们今天考虑的,因为变量实在太多了。


中国的大模型发展速度跟企业应用落地关系不大

白鸦:我觉得中国的大模型发展速度跟使用大模型的公司关系不大。我们的做法其实很简单,内部测试的时候使用 OpenAI,如果 OpenAI 能够实现,就会去找能做到的国产厂商合作,谁能做到,就跟谁合作。反正现在的大模型都是在追 OpenAI 的进度,OpenAI 能做到,他们有一天也可以做到。新技术发布后,自己用熟练的时间,跟国内厂商跟进的时间其实是差不多的。

但是面向内部的系统,我们其实是搭建了一个自己的 llama2 模型来服务公司的客服人员,有几个原因:

第一,想让团队成员上手熟悉大模型。

第二,内部系统使用,不会被客户绑架。如果自建的大模型面向客户,就很容易被客户绑架,成本很难控制。


大模型时代如何构建企业的竞争力?

张帆:主要就是四个环节:构建自己的基础模型、有一个适应当下模式的协作组织、沉淀自己的数据资产、让资产服务于公司的业务场景。

如何选择一个好的基础模型作为基础,首先是不要让业务和基座模型做耦合,一定要解耦,在模型之上构建自己的能力,能够复用到不同的业务上。

什么样的基座模型是一个好模型?首先是持续性,是不是能持续提供服务;其次是有没有一个完备的矩阵,因为很多场景可能不是只用一个模型,有些场景是 13B 的模型,有些则是 6B 的模型就够了。

我们需要构建一个什么样的组织?企业如何构建自己的核心能力层,是不是有自己的 prompt 工程师、微调工程师,甚至大模型的 BP——专门去业务线收集信息、沟通交流和收集数据。构建一个自己的组织模式尤为重要。

第三,今天的数据资产是什么,并不是只要是数据就有竞争力,比如知识图谱的数据,本质上就是以前自然语言处理能力受限,没办法处理复杂数据的变相处理,以前很好用,但现在大模型时代了,它的价值反而被削弱了。我们要及早去构建基于大模型的数据资产,而不是想着直接应用原有的数据资产。

最后,业务场景为什么重要?因为用户不会每次都到 ChatGPT 里获取结果,一定是就近原则,用最舒服的方式解决问题。比如 Notion AI 的扩写,用户写了一句话,在 Notion 里很自然地选择这句话然后选择扩写,结果就出来了,不太会专门跑到 ChatGPT 里尝试。所以如何把大模型的能力耦合到产品的业务场景,让用户自然而然、无感的用起来,这就是产品的价值。


AGI 时代的未来创业新趋势

程操红:第一,无应用会是未来趋势。大家对于传统的流程表单和报表是很反感的,因为这种开发难、使用难,商业模式转化也难。应用商店里一堆应用,用户需要试用和开通,需要专门的学习和培训,但是 AI 出现之后,用户直接跟 AI 助理打交道就好了,AI 助理帮助你去买咖啡、帮你请假、帮你去做物业巡检。用户跟 AI 的交互也会变得特别简单和自然。这样的背景下,很多应用就没有存在的必要了。

第二,细分领域将涌现出更多丰富的、多元化的数字助理或者数字员工。优秀的个体或组织都可以在各自细分领域中创建和迭代智能助理,并在高频协同网络中分享自身的知识、经验和技能,比如排产专家、工艺大师、数字助教等,有效解决资源稀缺的问题。

甚至我们自己,到达一定岁数的时候,也可以建立自己的智能助理,进行更好的知识传播。

第三,少数真人+大量智能助理是未来创新组织的重要组成逻辑。小而美的组织会大量出现,专业的助理可以解决人、财、物产、供销等层面的问题,公司内的岗位减少了,但大量的新组织会产生,个人的创造力和活力会被真正激发。


如果你关注大模型领域,欢迎扫码加入我们的大模型交流群,来一起探讨大模型时代的共识和认知,跟上大模型时代的这股浪潮。创业者应该如何拥抱AGI:尽早下场、CEO亲自抓、让3.5%的人先参与

更多阅读王小川创业 8 个月:大模型还没到谈 PMF 的时候
AI Pin、Meta AI、Snap 眼镜,AI 可穿戴设备的风又要吹起来了?
估值超5亿美元,体验碾压Bard、Bing,AI搜索引擎Perplexity的想象力在哪里?
Meta、Midjourney、Adobe、DALL·E:四大巨头的 AI 绘图模型综合评测
时代周刊:为什么 Sam Altman 是 2023 年度 CEO?
转载原创文章请添加微信:geekparker

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 12 月
 123
45678910
11121314151617
18192021222324
25262728293031
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25

面向「空天具身智能」,北航团队提出星座规划新基准丨NeurIPS’25 鹭羽 2025-12-13 22:37...
钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议

钉钉又发新版本!把 AI 搬进每一次对话和会议 梦晨 2025-12-11 15:33:51 来源:量子位 A...
5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级 思邈 2025-12-10 14:28:37 来源:量子位 让更大规...
商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1

商汤Seko2.0重磅发布,合作短剧登顶抖音AI短剧榜No.1 十三 2025-12-15 14:13:14 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了

读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了

读懂2025中国AI走向!公司×产品×人物×方案,最值得关注的都在这里了 衡宇 2025-12-10 12:3...
5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级

5天连更5次,可灵AI年末“狂飙式”升级 思邈 2025-12-10 14:28:37 来源:量子位 让更大规...
戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案

戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案

戴尔 x OpenCSG,推出⾯向智能初创企业的⼀体化 IT 基础架构解决方案 十三 2025-12-10 1...
九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局

九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局

九章云极独揽量子位三项大奖:以“一度算力”重构AI基础设施云格局 量子位的朋友们 2025-12-10 18:...
乐奇Rokid这一年,一路狂飙不回头

乐奇Rokid这一年,一路狂飙不回头

乐奇Rokid这一年,一路狂飙不回头 梦瑶 2025-12-10 20:41:15 来源:量子位 梦瑶 发自 ...