2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

1,445次阅读
没有评论

蔡泽凡 投稿
量子位 | 公众号 QbitAI

用KV缓存加速大模型的显存瓶颈,终于迎来突破。

北大、威斯康辛-麦迪逊、微软等联合团队提出了全新的缓存分配方案,只用2.5%的KV cache,就能保持大模型90%的性能。

这下再也不用担心KV占用的显存容量过高,导致显卡不够用了。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

该方法名为PyramidKV,顾名思义,在KV缓存压缩的过程中融入了金字塔型的信息汇聚方式。

在内存受限的情况下,PyramidKV表现非常出色,既保留了长上下文理解能力,又显著减少了内存使用。

目前,PyramidKV相关代码已经在GitHub开源

引入金字塔信息汇聚方式

随着模型尺寸的增大,推理需要的时间越来越多。KV cache作为推理加速的关键技术,通过缓存之前的解码步骤中计算出的Transformer的K和V矩阵减少后续解码时间。

但是,随着序列长度增大,需要缓存的KV cache会快速增长,占用大量显存。针对这一问题,之前的工作设计策略是对KV cache进行压缩。

实际上,长文本的推理加速和显存节省作为一个重要的话题,这涉及到广泛的大模型下游应用,比如检索增强生成(Retrieval-Augmented Generation)、上下文学习(In-Context Learning)受到广泛关注。

KV cache及KV cache的压缩能否有效帮助长文本实现推理加速成为广受关注的研究方向。

采用均一压缩策略,是最佳方案吗?

传统压缩方法的一个共同特点是,均对每个Transformer层使用同样的KV cache压缩设置,使用同样的方法压缩到同样的长度。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

但PyramidKV团队发现,对KV cache进行极致压缩情况下上述方法的表现,发现当超长文本压缩到极致小的KV大小时(从32k 长度压缩到64,即保留0.2%的KV cache长度)时,会面临严重的性能减弱。

于是作者提出了疑问:对每个Transformer层将KV cache压缩到同样的大小是否为最优方案?

为了回答上述问题,研究团队对大模型进行检索增强生成的机制进行深入分析。

作者研究了Llama模型进行多文档问答的逐层注意力图,发现了注意力层中的金字塔形信息汇聚模式(Pyramidal Information Funneling)的存在:

  • 在模型的低层(例如第0层)中,注意力得分呈现近似均匀分布,这表明模型在较低层时从所有可用内容中全局聚合信息,而不会优先关注特定的段落。
  • 当编码信息进行到中间层(6-18)时,逐渐转变为聚焦在段落内部的注意力模式 (Localized Attention)。在这个阶段,注意力主要集中在同一文档内的Token上,表明模型在单个段落内进行了段落内部的信息聚合。
  • 这种趋势在上层(24-30)继续并加强,本文观察到了“Attention Sink”和“Massive Activation”现象。

在这些层中,注意力机制极大地集中在少数几个关键Token上,因此只需要保留这些关键Token就能让输出保持一致并且减少显存占用。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

这种注意力分配模式,即极高的注意力得分,表明模型已将信息聚合到这些关键标记中。

这种注意力现象显示了大模型对大量复杂的信息的进行编码的机制,最终得到生成准确答案所需的最关键信息。

根据以上的发现,作者认为之前的工作对所有Transformer层统一处理是低效的,因此不同Transformer层的注意力稀疏程度并不相同。在低层能观察到特别稠密的注意力,而在较高层则可以观察到非常稀疏的注意力。

因此,在不同层之间使用固定的 KV 缓存大小可能会导致性能不佳。这些方法可能在较高层的稀疏注意力中保留许多不重要的 tokens,而忽略了较低层密集注意力中的许多重要的 tokens。

每层注意力特点不同,分层施策才是正解

于是,作者选择了通过基于注意力模式动态分配缓存预算来提高压缩效率。

具体而言,PyramidKV在信息更加分散的较低层分配更多的KV cache缓存,而在信息集中于少数关键tokens的较高层减少KV cache缓存。

一旦为每一层确定了KV缓存预算,PyramidKV在每一个Transformer层中选择根据注意力选择要缓存的KV。

最后的部分Token的KV缓存,即Instruction Token,会在所有Transformer层中保留。

根据UIUC、普林斯顿等提出的SnapKV方法,剩余的KV的选择由从这些Instruction Token中获得的对其他的Token注意力分数来指导——

接收到更高注意力分数的Token被认为与生成过程更相关,因此其KV状态优先保存在GPU缓存中。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

2.5%的KV cache,保持90%模型性能

为了评估PyramidKV的表现,作者使用最新的开源大模型Llama-3-8B-Instruct和Mistral-7B-Instruct,来对PyramidKV和其他方法进行对比。

测试示例以生成格式进行评估,所有任务的答案均通过贪婪解码生成,并使用 LongBench来评估PyramidKV在处理长上下文输入任务中的表现。

LongBench是一个精心设计的基准测试套件,用于测试语言模型处理长文档和复杂信息序列的能力。

该基准测试旨在对长上下文输入进行多任务评估,包括17个数据集,涵盖单文档问答、多文档问答、摘要生成、少样本学习、合成数据和代码生成等任务。

数据集的平均输入长度从1235个到18409个tokens不等,需要大量的内存来管理KV缓存。

对于所有这些任务,作者都遵循 LongBench推荐的标准指标。

结果,在64、96、128、256和512个KV cache缓存大小的设定下,PyramidKV在LongBench中均取得了优于baseline的效果。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

在此基础上,作者还研究了两种不同的操作场景——节省内存场景(Memory-Efficient Scenario)和保持性能场景(Performance-Preserving Scenario),分别用于在内存和模型性能之间进行权衡。

PyramidKV在Longbench的多个任务和平均得分上均取得了优于baseline的效果。

值得注意的是,PyramidKV在size为128的设定下,在TREC任务(上下文学习问答挑战)中表现出显著优越的性能,相较于baseline,提高了20.的ACC结果。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

总体而言,PyramidKV仅用12%的KV缓存就能保持完整的性能,并且在各种KV缓存大小的设定下和不同主干模型中始终优于其他方法,特别是在仅保留约128(0.7%)KV cache缓存的节省内存场景中,其性能优势尤为明显。

在具体任务的检查中,PyramidKV在TREC任务(上下文学习问答挑战)中表现出显著优越的性能,仅仅使用64的KV cache缓存大小(原始输入是5k长度)就能达到90%的性能。

这表明模型有效地聚合了样本中的任务信息,突出了在上下文学习任务上进一步研究的潜力。

下面的表则展示了PyramidKV使KV缓存的占用减少的情况。作者评估了Llama-3-8B-Instruct的内存消耗。

具体来说,作者发现在固定批量大小为1、输入长度为8192、模型权重为fp16格式的情况下,PyramidKV在不同缓存大小下显著减少了KV缓存的内存,还一定程度上保留了任务性能。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

为了进一步理解PyramidKV在LongBench上的性能,作者还进行了“大海捞针”实验,将PyramidKV与SnapKV进行比较,并且对比128大小的KV缓存和完整的KV缓存。

在输入序列长度在2000到4000之间的中等上下文情况下,SnapKV在“大海捞针”测试中产生了越来越多的错误案例。

在输入序列长度超过6000的长上下文情况下,SnapKV显著降低了LLMs在评估中的性能。

相比之下,PyramidKV在大多数情况下减轻了这种弱化效应。下图展示了定量结果。分数越高、颜色越浅,表示着检索能力越强。

在该任务的平均得分中,完整KV得分为65.0,PyramidKV得分为62.6,而SnapKV得分为57.3。

2.5%KV缓存保持大模型90%性能,大模型金字塔式信息汇聚模式探秘|开源

此外,作者的实验表明,PyramidKV在上下文学习(In-Context Learning)的少样本学习任务中显著优于其他方法。

这表明KV cache缓存压缩在上下文学习中的应用前景广阔,这种方法有可能在受限的内存条件下实现更多样本的引入。

论文地址:
https://arxiv.org/abs/2406.02069
项目主页:
https://zefan-cai.github.io/PyramidKV.github.io/
GitHub:
https://github.com/Zefan-Cai/PyramidKV

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2024 年 6 月
 12
3456789
10111213141516
17181920212223
24252627282930
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开

清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开

清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开 Jay 2026-01-08 20:18:...
训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享

训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享

训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享 衡宇 2026-01-08 20:...
「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2

「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2

「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2...
AI金矿上打盹的小红书,刚刚醒了一「点点」

AI金矿上打盹的小红书,刚刚醒了一「点点」

AI金矿上打盹的小红书,刚刚醒了一「点点」 鱼羊 2025-12-26 17:04:08 来源:量子位 一个积...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光

海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光

海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光 量子位的朋友们 2026-01-06...
英特尔CES奇袭老黄大本营!英伟达显卡刚涨价,最强酷睿量产出货

英特尔CES奇袭老黄大本营!英伟达显卡刚涨价,最强酷睿量产出货

英特尔CES奇袭老黄大本营!英伟达显卡刚涨价,最强酷睿量产出货 十三 2026-01-06 13:54:54 ...
陈天桥代季峰打响2026大模型第一枪:30B参数跑出1T性能

陈天桥代季峰打响2026大模型第一枪:30B参数跑出1T性能

陈天桥代季峰打响2026大模型第一枪:30B参数跑出1T性能 鹭羽 2026-01-06 14:28:58 来...
OpenAI推理第一人离职,7年打造了o3/o1/GPT-4/Codex

OpenAI推理第一人离职,7年打造了o3/o1/GPT-4/Codex

OpenAI推理第一人离职,7年打造了o3/o1/GPT-4/Codex 衡宇 2026-01-06 13:0...