New and improved embedding model

347 Views
No Comments

New and improved embedding model

New and improved embedding model

The new model, text-embedding-ada-002, replaces five separate models for text search, text similarity, and code search, and outperforms our previous most capable model, Davinci, at most tasks, while being priced 99.8% lower.

Embeddings are numerical representations of concepts converted to number sequences, which make it easy for computers to understand the relationships between those concepts. Since the initial launch of the OpenAI /embeddings endpoint, many applications have incorporated embeddings to personalize, recommend, and search content.

New and improved embedding modelNew and improved embedding modelNew and improved embedding model

You can query the /embeddings endpoint for the new model with two lines of code using our OpenAI Python Library, just like you could with previous models:

import openai
response = openai.Embedding.create(
input="porcine pals say",
model="text-embedding-ada-002"
)
import openai
response = openai.Embedding.create(
input="porcine pals say",
model="text-embedding-ada-002"
)

print(response)
{
"data": [
{
"embedding": [
-0.0108,
-0.0107,
0.0323,
...
-0.0114
],
"index": 0,
"object": "embedding"
}
],
"model": "text-embedding-ada-002",
"object": "list"
}

Model improvements

Stronger performancetext-embedding-ada-002 outperforms all the old embedding models on text search, code search, and sentence similarity tasks and gets comparable performance on text classification. For each task category, we evaluate the models on the datasets used in old embeddings.

Unification of capabilities. We have significantly simplified the interface of the /embeddings endpoint by merging the five separate models shown above (text-similaritytext-search-querytext-search-doccode-search-text and code-search-code) into a single new model. This single representation performs better than our previous embedding models across a diverse set of text search, sentence similarity, and code search benchmarks.

Longer context. The context length of the new model is increased by a factor of four, from 2048 to 8192, making it more convenient to work with long documents.

Smaller embedding size. The new embeddings have only 1536 dimensions, one-eighth the size of davinci-001 embeddings, making the new embeddings more cost effective in working with vector databases.

Reduced price. We have reduced the price of new embedding models by 90% compared to old models of the same size. The new model achieves better or similar performance as the old Davinci models at a 99.8% lower price.

Overall, the new embedding model is a much more powerful tool for natural language processing and code tasks. We are excited to see how our customers will use it to create even more capable applications in their respective fields.

Limitations

The new text-embedding-ada-002 model is not outperforming text-similarity-davinci-001 on the SentEval linear probing classification benchmark. For tasks that require training a light-weighted linear layer on top of embedding vectors for classification prediction, we suggest comparing the new model to text-similarity-davinci-001 and choosing whichever model gives optimal performance.

Check the Limitations & Risks section in the embeddings documentation for general limitations of our embedding models.

Examples of the embeddings API in action

Kalendar AI is a sales outreach product that uses embeddings to match the right sales pitch to the right customers out of a dataset containing 340M profiles. This automation relies on similarity between embeddings of customer profiles and sale pitches to rank up most suitable matches, eliminating 40–56% of unwanted targeting compared to their old approach.

Notion, the online workspace company, will use OpenAI’s new embeddings to improve Notion search beyond today’s keyword matching systems.

Read More 

END
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
Comment(No Comments)

文心AIGC

March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
最新评论
热评文章